0000000001254500

AUTHOR

Aapo Hyvärinen

showing 6 related works from this author

Decoding Emotional Valence from Electroencephalographic Rhythmic Activity

2017

We attempt to decode emotional valence from electroencephalographic rhythmic activity in a naturalistic setting. We employ a data-driven method developed in a previous study, Spectral Linear Discriminant Analysis, to discover the relationships between the classification task and independent neuronal sources, optimally utilizing multiple frequency bands. A detailed investigation of the classifier provides insight into the neuronal sources related with emotional valence, and the individual differences of the subjects in processing emotions. Our findings show: (1) sources whose locations are similar across subjects are consistently involved in emotional responses, with the involvement of parie…

PeriodicitybrainvastauksetSpectral Linear Discriminant AnalysisEmotionsneuronsEmotional valenceElectroencephalography050105 experimental psychology03 medical and health sciences0302 clinical medicineRhythmMultiple frequencytunteetmedicine0501 psychology and cognitive sciencesEEGta113Communicationmedicine.diagnostic_testbusiness.industry05 social sciencesDiscriminant AnalysisElectroencephalography16. Peace & justiceLinear discriminant analysis113 Computer and information scienceshermosolutEeg activityresponsesaivotbusinessPsychology030217 neurology & neurosurgeryDecoding methodsCognitive psychology
researchProduct

Decoding attentional states for neurofeedback Mindfulness vs. wandering thoughts

2018

Abstract Neurofeedback requires a direct translation of neuronal brain activity to sensory input given to the user or subject. However, decoding certain states, e.g., mindfulness or wandering thoughts, from ongoing brain activity remains an unresolved problem. In this study, we used magnetoencephalography (MEG) to acquire brain activity during mindfulness meditation and thought-inducing tasks mimicking wandering thoughts. We used a novel real-time feature extraction to decode the mindfulness, i.e., to discriminate it from the thought-inducing tasks. The key methodological novelty of our approach is usage of MEG power spectra and functional connectivity of independent components as features …

AdultMaleMindfulnessBrain activity and meditationCognitive NeuroscienceFeature extractionElectroencephalographyta3112050105 experimental psychologySession (web analytics)CLASSIFICATION03 medical and health sciences0302 clinical medicineMachine learningmedicineHumans0501 psychology and cognitive sciencesAttentionNETWORKEEGta515tietoinen läsnäolota113Brain MappingMEGmedicine.diagnostic_test05 social sciencesNoveltyBrainMagnetoencephalographyMagnetoencephalographyNeurofeedbackbiopalauteMINDkoneoppiminenMeditationNeurologyEXPERIENCEFemaleNeurofeedbackPsychologyMindfulness030217 neurology & neurosurgeryCognitive psychologyNEUROIMAGE
researchProduct

Spatio-Chromatic Adaptation via Higher-Order Canonical Correlation Analysis of Natural Images

2014

Independent component and canonical correlation analysis are two general-purpose statistical methods with wide applicability. In neuroscience, independent component analysis of chromatic natural images explains the spatio-chromatic structure of primary cortical receptive fields in terms of properties of the visual environment. Canonical correlation analysis explains similarly chromatic adaptation to different illuminations. But, as we show in this paper, neither of the two methods generalizes well to explain both spatio-chromatic processing and adaptation at the same time. We propose a statistical method which combines the desirable properties of independent component and canonical correlat…

LightVisual SystemRECEPTIVE-FIELD PROPERTIESlcsh:MedicineSocial and Behavioral SciencesBioinformaticsSTRIATE CORTEXCOLOR APPEARANCEImage Processing Computer-AssistedPsychophysicsPsychologylcsh:ScienceVisual CortexMathematicsCoding MechanismsMultidisciplinarySPECTRAL DESCRIPTIONSStatisticsSensory SystemsPRIMARY VISUAL-CORTEXDATA SETSPrincipal component analysisSensory PerceptionSPATIAL STRUCTURECanonical correlationAlgorithmsColor PerceptionResearch ArticleeducationColorCHROMATIC MECHANISMS114 Physical sciencesArtificial IntelligenceComponent (UML)PsychophysicsHumansComputer SimulationChromatic scaleStatistical MethodsBiologyProbabilityComputational NeuroscienceModels StatisticalINDEPENDENT COMPONENT ANALYSISbusiness.industrylcsh:RNeurosciencesComputational BiologyPattern recognitionIndependent component analysisData set2-STAGE LINEAR RECOVERYChromatic adaptationlcsh:QArtificial intelligencebusinessPhotic StimulationMathematicsNeurosciencePLoS ONE
researchProduct

Complex-Valued Independent Component Analysis of Natural Images

2011

Linear independent component analysis (ICA) learns simple cell receptive fields fromnatural images. Here,we showthat linear complex-valued ICA learns complex cell properties from Fourier-transformed natural images, i.e. two Gabor-like filters with quadrature-phase relationship. Conventional methods for complex-valued ICA assume that the phases of the output signals have uniform distribution. We show here that for natural images the phase distributions are, however, often far from uniform. We thus relax the uniformity assumption and model also the phase of the sources in complex-valued ICA. Compared to the original complex ICA model, the new model provides a better fit to the data, and leads…

Uniform distribution (continuous)business.industryPhase (waves)Pattern recognitionSimple cellComplex cellIndependent component analysismedicine.anatomical_structureComponent analysisComputer Science::SoundReceptive fieldmedicineArtificial intelligenceLinear independencebusinessMathematics
researchProduct

Unsupervised representation learning of spontaneous MEG data with nonlinear ICA

2023

Funding Information: We wish to thank the reviewers and editors for the useful comments to improve the paper a lot. We thank Dr. Hiroshi Morioka for the useful discussion at the beginning of the project. L.P. was funded in part by the European Research Council (No. 678578 ). A.H. was supported by a Fellowship from CIFAR, and the Academy of Finland. The authors acknowledge the computational resources provided by the Aalto Science-IT project, and also wish to thank the Finnish Grid and Cloud Infrastructure (FGCI) for supporting this project with computational and data storage resources. | openaire: EC/H2020/678578/EU//HRMEG Resting-state magnetoencephalography (MEG) data show complex but stru…

neuropalautenon-stationarityMEGsignaalinkäsittelyCognitive Neurosciencesyväoppiminensignaalianalyysineurofeedbackunsupervised learningdeep generative modelkoneoppiminenNeurologyresting-state networkmagnetoencephalography (MEG)nonlinear independent component analysis (ICA)NeuroImage
researchProduct

PCA-based source-space contrast maps reveal psychologically meaningful individual differences in continuous MEG activity

2019

AbstractWithin the field of neuroimaging, there has been an increasing trend towards studying brain activity in naturalistic conditions, and it is possible to robustly estimate networks of on-going oscillatory activity in the brain. However, not many studies have focused on differences between individuals in on-going brain activity that would be associable to psychological or behavioral characteristics. Existing standard methods can perform well at single-participant level, but generalizing the methodology across many participants is challenging due to individual differences of brains. As an example of a clinically relevant, naturalistic condition we consider here mindfulness. Trait mindful…

MindfulnessBrain activity and meditation05 social sciencesPerspective (graphical)Contrast (statistics)050105 experimental psychology03 medical and health sciences0302 clinical medicineNeuroimagingMind-wanderingmedicineTraitAnxiety0501 psychology and cognitive sciencesmedicine.symptomPsychology030217 neurology & neurosurgeryCognitive psychology
researchProduct