0000000001254686

AUTHOR

Giulia Tagliabue

showing 7 related works from this author

Prototyping Crop Traits Retrieval Models for CHIME: Dimensionality Reduction Strategies Applied to PRISMA Data

2022

In preparation for new-generation imaging spectrometer missions and the accompanying unprecedented inflow of hyperspectral data, optimized models are needed to generate vegetation traits routinely. Hybrid models, combining radiative transfer models with machine learning algorithms, are preferred, however, dealing with spectral collinearity imposes an additional challenge. In this study, we analyzed two spectral dimensionality reduction methods: principal component analysis (PCA) and band ranking (BR), embedded in a hybrid workflow for the retrieval of specific leaf area (SLA), leaf area index (LAI), canopy water content (CWC), canopy chlorophyll content (CCC), the fraction of absorbed photo…

feature selectionCHIMEactive learningGeneral Earth and Planetary Scienceshybrid methodPRISMAprincipal component analysibiochemical and biophysical traitGaussian process regressionPRISMA; CHIME; hybrid methods; biochemical and biophysical traits; Gaussian process regression; active learning; principal component analysis; feature selectionRemote Sensing
researchProduct

Hybrid retrieval of crop traits from multi-temporal PRISMA hyperspectral imagery

2022

The recently launched and upcoming hyperspectral satellite missions, featuring contiguous visible-to-shortwave infrared spectral information, are opening unprecedented opportunities for the retrieval of a broad set of vegetation traits with enhanced accuracy through novel retrieval schemes. In this framework, we exploited hyperspectral data cubes collected by the new-generation PRecursore IperSpettrale della Missione Applicativa (PRISMA) satellite of the Italian Space Agency to develop and test a hybrid retrieval workflow for crop trait mapping. Crop traits were mapped over an agricultural area in north-east Italy (Jolanda di Savoia, FE) using PRISMA images collected during the 2020 and 202…

Machine learning regressionWater contentEarth ObservationComputers in Earth SciencesNitrogen contentRemote sensingEngineering (miscellaneous)Chlorophyll contentArticleAtomic and Molecular Physics and OpticsComputer Science ApplicationsISPRS Journal of Photogrammetry and Remote Sensing
researchProduct

Gaussian processes retrieval of crop traits in Google Earth Engine based on Sentinel-2 top-of-atmosphere data.

2022

The unprecedented availability of optical satellite data in cloud-based computing platforms, such as Google Earth Engine (GEE), opens new possibilities to develop crop trait retrieval models from the local to the planetary scale. Hybrid retrieval models are of interest to run in these platforms as they combine the advantages of physically-based radiative transfer models (RTM) with the flexibility of machine learning regression algorithms. Previous research with GEE primarily relied on processing bottom-of-atmosphere (BOA) reflectance data, which requires atmospheric correction. In the present study, we implemented hybrid models directly into GEE for processing Sentinel-2 (S2) Level-1C (L1C)…

sentinel-2active learning (AL)Soil ScienceGeologyUNESCO::CIENCIAS TECNOLÓGICASUncertainty estimategaussian processes (GP)google earth engineBiophysical and biochemical crop traiteuclidean distance-based diversity (EBD)top-of-atmosphere reflectancehybrid retrieval methodsHybrid retrieval methoduncertainty estimatesbiophysical and biochemical crop traitsatmosphere radiative transfer modelComputers in Earth SciencesRemote sensing of environment
researchProduct

Evaluation of Hybrid Models to Estimate Chlorophyll and Nitrogen Content of Maize Crops in the Framework of the Future CHIME Mission

2022

In the next few years, the new Copernicus Hyperspectral Imaging Mission (CHIME) is foreseen to be launched by the European Space Agency (ESA). This mission will provide an unprecedented amount of hyperspectral data, enabling new research possibilities within several fields of natural resources, including the “agriculture and food security” domain. In order to efficiently exploit this upcoming hyperspectral data stream, new processing methods and techniques need to be studied and implemented. In this work, the hybrid approach (HYB) and its variant, featuring sampling dimensionality reduction through active learning heuristics (HAL), were applied to CHIME-like data to evaluate the…

chlorophyll contentmachine learning regression algorithmactive learningGeneral Earth and Planetary Sciencesspaceborne imaging spectroscopyradiative transfer modelingGaussian process regressionnitrogen contentRemote Sensing
researchProduct

Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain: A review

2022

10122 Institute of Geography1903 Computers in Earth SciencesSoil ScienceGeology910 Geography & travelComputers in Earth Sciences1111 Soil Science1907 Geology
researchProduct

Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain: A review

2022

Remote detection and monitoring of the vegetation responses to stress became relevant for sustainable agriculture. Ongoing developments in optical remote sensing technologies have provided tools to increase our understanding of stress-related physiological processes. Therefore, this study aimed to provide an overview of the main spectral technologies and retrieval approaches for detecting crop stress in agriculture. Firstly, we present integrated views on: i) biotic and abiotic stress factors, the phases of stress, and respective plant responses, and ii) the affected traits, appropriate spectral domains and corresponding methods for measuring traits remotely. Secondly, representative result…

Precision agriculturemultispectralbiotic and abiotic stresatelliteSoil Sciencesolar induced fluorescenceGeologymulti-modalPrecision agriculture multi-modal solar-induced fluorescence satellite hyperspectral multispectral biotic and abiotic stressUNESCO::CIENCIAS TECNOLÓGICASITC-HYBRIDhyperspectralITC-ISI-JOURNAL-ARTICLEddc:550Computers in Earth Sciences
researchProduct

Assessment of maize nitrogen uptake from PRISMA hyperspectral data through hybrid modelling

2022

Atmospheric Scienceprecision farmingradiative transfer modelsApplied Mathematicsplant nitrogen uptake estimationComputers in Earth Sciencesmachine learning regression algorithmsGeneral Environmental ScienceEuropean Journal of Remote Sensing
researchProduct