0000000001259469

AUTHOR

Phong H. Nguyen

Searches for Large-Scale Anisotropy in the Arrival Directions of Cosmic Rays Detected above Energy of $10^{19}$ eV at the Pierre Auger Observatory and the Telescope Array

Spherical harmonic moments are well-suited for capturing anisotropy at any scale in the flux of cosmic rays. An unambiguous measurement of the full set of spherical harmonic coefficients requires full-sky coverage. This can be achieved by combining data from observatories located in both the northern and southern hemispheres. To this end, a joint analysis using data recorded at the Telescope Array and the Pierre Auger Observatory above 1019 eV is presented in this work. The resulting multipolar expansion of the flux of cosmic rays allows us to perform a series of anisotropy searches, and in particular to report on the angular power spectrum of cosmic rays above 1019 eV. No significant devia…

research product

Features of the Energy Spectrum of Cosmic Rays above 2.5×10$^{18}$ eV Using the Pierre Auger Observatory

We report a measurement of the energy spectrum of cosmic rays above $2.5{\times} 10^{18}$ eV based on $215,030$ events. New results are presented: at about $1.3{\times} 10^{19}$ eV, the spectral index changes from $2.51 \pm 0.03 \textrm{ (stat.)} \pm 0.05 \textrm{ (sys.)}$ to $3.05 \pm 0.05 \textrm{ (stat.)}\pm 0.10\textrm{ (sys.)}$, evolving to $5.1\pm0.3\textrm{ (stat.)} \pm 0.1\textrm{ (sys.)}$ beyond $5{\times} 10^{19}$ eV, while no significant dependence of spectral features on the declination is seen in the accessible range. These features of the spectrum can be reproduced in models with energy-dependent mass composition. The energy density in cosmic rays above $5{\times} 10^{18}$ eV …

research product