0000000001260798

AUTHOR

A Munar

showing 2 related works from this author

Hadronic Shower Development in Iron-Scintillator Tile Calorimetry

2000

The lateral and longitudinal profiles of hadronic showers detected by a prototype of the ATLAS Iron-Scintillator Tile Hadron Calorimeter have been investigated. This calorimeter uses a unique longitudinal configuration of scintillator tiles. Using a fine-grained pion beam scan at 100 GeV, a detailed picture of transverse shower behavior is obtained. The underlying radial energy densities for four depth segments and for the entire calorimeter have been reconstructed. A three-dimensional hadronic shower parametrization has been developed. The results presented here are useful for understanding the performance of iron-scintillator calorimeters, for developing fast simulations of hadronic showe…

Nuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCalorimetryScintillatorCalorimetry01 natural sciencesParticle detectorPartícules (Física nuclear)High Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesComputer data analysis[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Detectors and Experimental Techniques010306 general physicsNuclear ExperimentInstrumentationPhysics010308 nuclear & particles physicsPROFILESCalorimeterTransverse planevisual_artScintillation countervisual_art.visual_art_mediumMeasuring instrumentFísica nuclearHigh Energy Physics::ExperimentTile
researchProduct

Performance of the ATLAS detector using first collision data

2010

More than half a million minimum-bias events of LHC collision data were collected by the ATLAS experiment in December 2009 at centre-of-mass energies of 0.9 TeV and 2.36 TeV. This paper reports on studies of the initial performance of the ATLAS detector from these data. Comparisons between data and Monte Carlo predictions are shown for distributions of several track- and calorimeter-based quantities. The good performance of the ATLAS detector in these first data gives confidence for successful running at higher energies.

Nuclear and High Energy PhysicsParticle physicsAtlas detectorPhysics::Instrumentation and DetectorsMonte Carlo methodFOS: Physical sciencesddc:500.253001 natural sciences7. Clean energySettore FIS/04 - Fisica Nucleare e SubnucleareHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)LHC ; ATLAS ; Minimum-bias ; 900 GeV ; 2.36 TeV ; PerformanceAtlas (anatomy)0103 physical sciencesmedicine[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ddc:530High Energy PhysicsDetectors and Experimental Techniques010306 general physicsCiencias ExactasDetectors de radiacióPhysicsHadron-Hadron ScatteringLarge Hadron Collider010308 nuclear & particles physicsATLAS DetectorSettore FIS/01 - Fisica SperimentaleATLAS experimentFísicaATLASCollisionmedicine.anatomical_structureExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGHigh Energy Physics::ExperimentLHCParticle Physics - Experiment
researchProduct