0000000001262716
AUTHOR
D. Melconian
Electron-capture branch of Tc-100 and tests of nuclear wave functions for double-beta decays
We present a measurement of the electron-capture branch of 100Tc. Our value, B(EC)=(2.6±0.4)×10−5, implies that the 100Mo neutrino absorption cross section to the ground state of 100Tc is roughly one third larger than previously thought. Compared to previous measurements, our value of B(EC) prevents a smaller disagreement with QRPA calculations relevant to double-β decay matrix elements.
High-resolution γ-ray spectroscopy: a versatile tool for nuclear β-decay studies at TRIUMF-ISAC
High-resolution γ-ray spectroscopy is essential to fully exploit the unique, high-quality beams available at the next generation of radioactive ion beam facilities such as the TRIUMF isotope separator and accelerator (ISAC). The 8π spectrometer, which consists of 20 Compton-suppressed HPGe detectors, has recently been reconfigured for a vigorous research programme in weak interaction and nuclear structure physics. With the addition of a variety of ancillary detectors it has become the world's most powerful device dedicated to β-decay studies. This paper provides a brief overview of the apparatus and highlights from recent experiments.
Electron-capture branch of 100Tc and tests of nuclear wave functions for double-beta decays
We present a measurement of the electron-capture branch of $^{100}$Tc. Our value, $B(\text{EC}) = (2.6 \pm 0.4) \times 10^{-5}$, implies that the $^{100}$Mo neutrino absorption cross section to the ground state of $^{100}$Tc is roughly one third larger than previously thought. Compared to previous measurements, our value of $B(\text{EC})$ prevents a smaller disagreement with QRPA calculations relevant to double-$\beta$ decay matrix elements.