0000000001265216

AUTHOR

Fabrizio Di Giovanni

showing 9 related works from this author

Synchronised gravitational atoms from mergers of bosonic stars

2020

If ultralight bosonic fields exist in Nature as dark matter, superradiance spins down rotating black holes (BHs), dynamically endowing them with equilibrium bosonic clouds, here dubbed synchronised gravitational atoms (SGAs). The self-gravity of these same fields, on the other hand, can lump them into (scalar or vector) horizonless solitons known as bosonic stars (BSs). We show that the dynamics of BSs yields a new channel forming SGAs. We study BS binaries that merge to form spinning BHs. After horizon formation, the BH spins up by accreting the bosonic field, but a remnant lingers around the horizon. If just enough angular momentum is present, the BH spin up stalls precisely as the remnan…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)High Energy Physics - TheoryAngular momentumSpins010308 nuclear & particles physicsHorizonAstrophysics::High Energy Astrophysical PhenomenaDark matterComputer Science::Neural and Evolutionary ComputationFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Quantum number01 natural sciences7. Clean energyAccretion (astrophysics)General Relativity and Quantum CosmologyGravitationHigh Energy Physics - Theory (hep-th)Quantum mechanics0103 physical sciencesBosonic field010306 general physicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Multi-field, multi-frequency bosonic stars and a stabilization mechanism

2021

Scalar bosonic stars (BSs) stand out as a multi-purpose model of exotic compact objects. We enlarge the landscape of such (asymptotically flat, stationary, everywhere regular) objects by considering multiple fields (possibly) with different frequencies. This allows for new morphologies ${\it and}$ a stabilization mechanism for different sorts of unstable BSs. First, any odd number of complex fields, yields a continuous family of BSs departing from the spherical, equal frequency, $\ell-$BSs. As the simplest illustration, we construct the $\ell$ = ${\it 1}$ ${\it BSs}$ ${\it family}$, that includes several single frequency solutions, including even parity (such as spinning BSs and a toroidal,…

PhysicsToroidField (physics)Scalar (mathematics)FOS: Physical sciencesGeneral Physics and AstronomyGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesStability (probability)General Relativity and Quantum CosmologyStarsNonlinear systemTheoretical physicsDipole0103 physical sciences010306 general physicsParity bit
researchProduct

Can fermion-boson stars reconcile multi-messenger observations of compact stars?

2021

Mixed fermion-boson stars are stable, horizonless, everywhere regular solutions of the coupled Einstein-(complex, massive) Klein-Gordon-Euler system. While isolated neutron stars and boson stars are uniquely determined by their central energy density, mixed configurations conform an extended parameter space that depends on the combination of the number of fermions and (ultra-light) bosons. The wider possibilities offered by fermion-boson stars could help explain the tension in the measurements of neutron star masses and radii reported in recent multi-messenger observations and nuclear-physics experiments. In this work we construct equilibrium configurations of mixed fermion-boson stars with…

Condensed Matter::Quantum GasesHigh Energy Astrophysical Phenomena (astro-ph.HE)Astrophysics - Solar and Stellar AstrophysicsFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics - High Energy Astrophysical PhenomenaGeneral Relativity and Quantum CosmologyAstrophysics::Galaxy AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)
researchProduct

Head-on collisions and orbital mergers of Proca stars

2019

Proca stars are self-gravitating Bose-Einstein condensates obtained as numerical stationary solutions of the Einstein-(complex)-Proca system. These solitonic can be both stable and form dynamically from generic initial data by the mechanism of gravitational cooling. In this paper we further explore the dynamical properties of these solitonic objects by performing both head-on collisions and orbital mergers of equal mass Proca stars, using fully non-linear numerical evolutions. For the head-on collisions, we show that the end point and the gravitational waveform from these collisions depends on the compactness of the Proca star. Proca stars with sufficiently small compactness collide leaving…

PhysicsAngular momentum010308 nuclear & particles physicsGravitational waveScalar (mathematics)FOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyPhysics::History of PhysicsBlack holeGravitationStarsGeneral Relativity and Quantum CosmologyRotating black hole0103 physical sciencesSchwarzschild metricAstrophysics::Earth and Planetary Astrophysics010306 general physicsAstrophysics::Galaxy AstrophysicsPhysical Review D
researchProduct

Dynamical bar-mode instability in spinning bosonic stars

2020

Spinning bosonic stars (SBSs) can form from the gravitational collapse of a dilute cloud of scalar/Proca particles with nonzero angular momentum, via gravitational cooling. The scalar stars are, however, transient due to a nonaxisymmetric instability which triggers the loss of angular momentum. By contrast, no such instability was observed for the fundamental ( m = 1 ) Proca stars. In [N. Sanchis-Gual et al., Phys. Rev. Lett. 123, 221101 (2019)] we tentatively related the different stability properties to the different toroidal/spheroidal morphology of the scalar/Proca models. Here, we continue this investigation, using three-dimensional numerical-relativity simulations of the Einstein-(mas…

PhysicsAngular momentum010308 nuclear & particles physicsGravitational waveScalar (mathematics)Scalar boson01 natural sciencesInstabilityNeutron starStarsGeneral Relativity and Quantum CosmologyQuantum electrodynamics0103 physical sciencesGravitational collapse010306 general physics
researchProduct

Reducing Visuospatial Pseudoneglect in Healthy Subjects by Active Video Gaming

2023

Pseudoneglect phenomenon refers to a condition in which healthy subjects tend to perceive the left side of exactly bisected lines as being slightly longer than the right one. However, behavioural data showed that athletes practising an open-skill sport display less pseudoneglect than the general population. Given the fact that so-called exergames (also known as active video games) are platforms designed to fully mimic sport activity, this work intends to investigate whether and how a one-week training period of exergame open-skill sport can determine a similar decrease in pseudoneglect. Fifteen healthy participants (non-athletes) responded to a visuospatial attention task and a control memo…

Settore M-PSI/02 - Psicobiologia E Psicologia Fisiologicavideo gamingGeneral NeuroscienceSettore MED/26 - Neurologiapseudoneglect; visuospatial attention; exergaming; video gamingvisuospatial attentionexergamingSettore BIO/09 - FisiologiapseudoneglectBrain Sciences
researchProduct

Dynamical formation and stability of fermion-boson stars

2020

Gravitationally bound structures composed by fermions and scalar particles known as fermion-boson stars are regular and static configurations obtained by solving the coupled Einstein-Klein-Gordon-Euler (EKGE) system. In this work, we discuss one possible scenario through which these fermion-boson stars may form by solving numerically the EKGE system under the simplifying assumption of spherical symmetry. Our initial configurations assume an already existing neutron star surrounded by an accreting cloud of a massive and complex scalar field. The results of our simulations show that once part of the initial scalar field is expelled via gravitational cooling the system gradually oscillates aro…

Coupling constantPhysicsCondensed Matter::Quantum Gases010308 nuclear & particles physicsScalar (mathematics)FOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyGravitationTheoretical physicsNeutron starStars0103 physical sciencesCircular symmetry010306 general physicsScalar fieldAstrophysics::Galaxy AstrophysicsBoson
researchProduct

Dynamical formation of Proca stars and quasistationary solitonic objects

2018

We perform fully non-linear numerical simulations within the spherically symmetric Einstein-(complex)Proca system. Starting with Proca field distributions that obey the Hamiltonian, momentum and Gaussian constraints, we show that the self-gravity of the system induces the formation of compact objects, which, for appropriate initial conditions, asymptotically approach stationary soliton-like solutions known as Proca stars. The excess energy of the system is dissipated by the mechanism of \textit{gravitational cooling} in analogy to what occurs in the dynamical formation of scalar boson stars. We investigate the dependence of this process on the phase difference between the real and imaginary…

Phase differencePhysics010308 nuclear & particles physicsGaussianFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Scalar boson01 natural sciencesGeneral Relativity and Quantum CosmologyGravitationStarsNonlinear systemsymbols.namesakeClassical mechanicsAmplitude0103 physical sciencessymbols010306 general physicsHamiltonian (quantum mechanics)Physical Review D
researchProduct

On the dynamical bar-mode instability in spinning bosonic stars

2020

Spinning bosonic stars (SBSs) can form from the gravitational collapse of a dilute cloud of scalar/Proca particles with non-zero angular momentum. In a recent work we found that the scalar stars are transient due to a non-axisymmetric instability which triggers the loss of angular momentum. We further study the dynamical formation of SBSs using 3-dimensional numerical-relativity simulations of the Einstein-(massive, complex)Klein-Gordon system and of the Einstein-(complex)Proca system. We incorporate a quartic self-interaction potential in the scalar case to gauge its effect on the instability; we investigate (m=2) Proca stars to assess their stability; we attempt to relate the instability …

FOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)General Relativity and Quantum Cosmology
researchProduct