0000000001276833

AUTHOR

B. Mong

showing 2 related works from this author

Measurement of the Spectral Shape of the β -Decay of Xe137 to the Ground State of Cs137 in EXO-200 and Comparison with Theory

2020

We report on a comparison between the theoretically predicted and experimentally measured spectra of the first-forbidden nonunique β-decay transition ^{137}Xe(7/2^{-})→^{137}Cs(7/2^{+}). The experimental data were acquired by the EXO-200 experiment during a deployment of an AmBe neutron source. The ultralow background environment of EXO-200, together with dedicated source deployment and analysis procedures, allowed for collection of a pure sample of the decays, with an estimated signal to background ratio of more than 99 to 1 in the energy range from 1075 to 4175 keV. In addition to providing a rare and accurate measurement of the first-forbidden nonunique β-decay shape, this work constitut…

PhysicsSpectral shape analysisGeneral Physics and AstronomyNuclear dataContext (language use)Electron7. Clean energy01 natural sciencesSpectral line0103 physical sciencesNeutron sourceAtomic physics010306 general physicsGround stateEnergy (signal processing)Physical Review Letters
researchProduct

Measurement of the Spectral Shape of the beta-decay of 137Xe to the Ground State of 137Cs in EXO-200 and Comparison with Theory

2020

We report on a comparison between the theoretically predicted and experimentally measured spectra of the first-forbidden non-unique $\beta$-decay transition $^{137}\textrm{Xe}(7/2^-)\to\,^{137}\textrm{Cs}(7/2^+)$. The experimental data were acquired by the EXO-200 experiment during a deployment of an AmBe neutron source. The ultra-low background environment of EXO-200, together with dedicated source deployment and analysis procedures, allowed for collection of a pure sample of the decays, with an estimated signal-to-background ratio of more than 99-to-1 in the energy range from 1075 to 4175 keV. In addition to providing a rare and accurate measurement of the first-forbidden non-unique $\bet…

Nuclear Theory (nucl-th)Nuclear TheoryFOS: Physical sciencesNuclear Experiment (nucl-ex)Nuclear Experiment
researchProduct