0000000001279081
AUTHOR
G. Kalicy
The PANDA Barrel DIRC detector
Abstract The PANDA experiment at the new Facility for Antiproton and Ion Research in Europe (FAIR) at GSI, Darmstadt, will study fundamental questions of hadron physics and QCD using high-intensity cooled antiproton beams with momenta between 1.5 and 15 GeV/c. Efficient Particle Identification for a wide momentum range and the full solid angle is required for reconstructing the various physics channels of the PANDA program. Hadronic Particle Identification in the barrel region of the detector will be provided by a DIRC counter. The design is based on the successful BABAR DIRC with important improvements, such as focusing optics and fast photon timing. Several of these improvements, includin…
Recent developments with microchannel-plate PMTs
Abstract Microchannel-plate (MCP) PMTs are the favored photon sensors for the DIRC detectors of the PANDA experiment at FAIR. Until recently the main drawback of MCP-PMTs were serious aging effects which led to a limited lifetime due to a rapidly decreasing quantum efficiency (QE) of the photo cathode (PC) as the integrated anode charge (IAC) increased. In the latest models of PHOTONIS and Hamamatsu an innovative atomic layer deposition (ALD) technique is applied to overcome these limitations. During the last five years comprehensive aging tests with ALD coated MCP-PMTs were performed and the results were compared to tubes treated with other techniques. The QE in dependence of the IAC was m…
Prototyping the PANDA Barrel DIRC
The design of the Barrel DIRC detector for the future PANDA experiment at FAIR contains several important improvements compared to the successful BABAR DIRC, such as focusing and fast timing. To test those improvements as well as other design options a prototype was build and successfully tested in 2012 with particle beams at CERN. The prototype comprises a radiator bar, focusing lens, mirror, and a prism shaped expansion volume made of synthetic fused silica. An array of micro-channel plate photomultiplier tubes measures the location and arrival time of the Cherenkov photons with sub-nanosecond resolution. The development of a fast reconstruction algorithm allowed to tune construction deta…
Tremendously increased lifetime of MCP-PMTs
Abstract Microchannel plate (MCP) PMTs are very attractive photon sensors for low light level applications in strong magnetic fields. However, until recently the main drawback of MCP-PMTs was their aging behavior which manifests itself in a limited lifetime due to a rapidly decreasing quantum efficiency (QE) of the photo cathode (PC) as the integrated anode charge (IAC) increases. In the latest models of PHOTONIS, Hamamatsu, and BINP novel techniques are applied to avoid these aging effects which are supposed to be mainly caused by feedback ion impinging on the PC and damaging it. For more than four years we are running a long-term aging test with new lifetime-enhanced MCP-PMT models by sim…
A Disc-DIRC Cherenkov detector with high resolution micro channel plate photomultiplier tubes
The upcoming PANDA Experiment at FAIR in Germany will be equipped with a novel Cherenkov detector type for high-energy particle identification. This very compact Disc-DIRC detector uses a large disc-shaped fused silica plate of 2 cm thickness as its Cherenkov radiator. The internally reflected Cherenkov light is transported to the rim of the disc where it is focused by quartz light guides onto microchannel plate photomultiplier tubes (MCP-PMTs) with high spatial resolution (pitch 0.5 mm) and high time resolution (σ ≈ 100 ps). The device has an active area of about 3 m2 and will be able to identify pions and kaons with a separation power of more than 3σ in the momentum range up to 4 GeV/c. I…
The PANDA DIRC Detectors at FAIR
The PANDA detector at the international accelerator Facility for Antiproton and Ion Research in Europe (FAIR) addresses fundamental questions of hadron physics. An excellent hadronic particle identification (PID) will be accomplished by two DIRC (Detection of Internally Reflected Cherenkov light) counters in the target spectrometer. The design for the barrel region covering polar angles between 22 deg. to 140 deg. is based on the successful BABAR DIRC with several key improvements, such as fast photon timing and a compact imaging region. The novel Endcap Disc DIRC will cover the smaller forward angles between 5 deg. (10 deg.) to 22 deg. in the vertical (horizontal) direction. Both DIRC coun…
The PANDA Barrel DIRC
The PANDA detector at the international accelerator Facility for Antiproton and Ion Research in Europe (FAIR) addresses fundamental questions of hadron physics. Experiments concerning charmonium spectroscopy, the search for hybrids and glueballs and the interaction of hidden and open charm particles with nucleons and nuclei will be performed with antiproton beams impinging on hydrogen or nuclear targets. Cooled beams allow the precision scan of resonances in formation experiments. The momentum range of the antiproton beam between 1.5 GeV/c and 15 GeV/c tests predictions by perturbation theory and will reveal deviations originating from strong QCD . An excellent hadronic particle identificat…
The Endcap Disc DIRC of PANDA
Abstract The Endcap Disc DIRC (EDD) for PANDA has been designed to identify traversing pions, kaons and protons in the future PANDA experiment. Its central part is a 2 cm thick fused silica plate. Focussing optics are attached to the outer rim of the plate, outside of the acceptance of the experiment. Fast, high-resolution MCP-PMTs, designed to register single Cherenkov photons, have been tested in magnetic field. Filters limit the spectral acceptance of the sensors to reduce dispersion effects and to extend their lifetime. A compact and fast readout is realized with ASICs. Analytical reconstruction algorithms allow for fast particle identification. The angular resolution of a DIRC prototyp…
Tests and developments of the PANDA Endcap Disc DIRC
The PANDA experiment at the future Facility for Antiproton and Ion Research (FAIR) requires excellent particle identification. Two different DIRC detectors will utilize internally reflected Cherenkov light of charged particles to enable the separation of pions and kaons up to momenta of 4 GeV/c. The Endcap Disc DIRC will be placed in the forward endcap of PANDA's central spectrometer covering polar angles between 5° and 22°. Its final design is based on MCP-PMTs for the photon detection and an optical system made of fused silica. A new prototype has been investigated during a test beam at CERN in May 2015 and first results will be presented. In addition a new synthetic fused silica material…
The PANDA Endcap Disc DIRC
Journal of Instrumentation 13(02), C02002 - C02002 (2018). doi:10.1088/1748-0221/13/02/C02002
Breakthrough in the lifetime of microchannel plate photomultipliers
Abstract Cherenkov detectors using the DIRC (Detection of Internally Reflected Cherenkov Light) principle are foreseen for particle identification in the P ¯ ANDA experiment at FAIR. Promising sensors for the detection of the Cherenkov light are the so-called micro-channel plate (MCP) photomultipliers (PMT). They have an excellent time resolution, can be operated at high gain for single photon detection and have a high resistivity against magnetic fields. The disadvantage of these devices was their limited lifetime, due to damage by feedback ions on the photocathode. The lifetime of various types of MCP-PMTs from different manufactures has been tested under conditions similar to that in the…
Development of an Endcap DIRC for PANDA
Abstract The aim of this research is to develop a planar DIRC detector showing advantages and performance similar to a classical, barrel shaped DIRC, but at smaller polar angles which cannot be accessed using a cylindrical geometry. The device will complement the PANDA Barrel DIRC by covering polar angles from 5° to 22°. The envisaged π /K-separation is ≥ 3 σ up to 4 GeV/c. A major challenge is the adaption of the device to the PANDA environment including a magnetic field of ~1–2 T, high rates and radiation, limited space for optics and sensors as well as the lack of a common first-level trigger. This paper discusses a detector design which forms a compromise between these constraints and a…
The PANDA Barrel DIRC
The PANDA experiment at the international accelerator Facility for Antiproton and Ion Research in Europe (FAIR) near GSI, Darmstadt, Germany will address fundamental questions of hadron physics. Excellent Particle Identification (PID) over a large range of solid angles and particle momenta will be essential to meet the objectives of the rich physics program. Charged PID for the barrel region of the PANDA target spectrometer will be provided by a DIRC (Detection of Internally Reflected Cherenkov light) detector. The Barrel DIRC will cover the polar angle range of 22$^\circ$-140$^\circ$ and cleanly separate charged pions from kaons for momenta between 0.5 GeV/c and 3.5 GeV/c with a separation…
Recent results with lifetime enhanced microchannel-plate photomultipliers
Abstract The favored photon sensors for the DIRC (detection of internally reflected Cherenkov light) detectors at the PANDA (Anti-proton Annihilation at Darmstadt) experiment at FAIR (Facility for anti-proton and ion research) are micro-channel-plate photomultipliers (MCP-PMTs). The main problem until a few years ago was the limited lifetime of the MCP-PMTs caused by a rapid decrease in quantum efficiency (QE) of the photo cathode (PC) with increasing integrated anode charge (IAC). These limitations are overcome by applying an atomic layer deposition (ALD) coating on the MCPs, as recently done by PHOTONIS and Hamamatsu. During the last years’ tests of lifetime enhanced MCP-PMTs were perform…
The DIRC detectors at the PANDA experiment
PANDA is an experiment at the new FAIR facility at GSI and will, among other physics goals,\ud perform charmonium spectroscopy and search for gluonic excitations using high luminosity antiproton beams up to 15 GeV/c. A high performance particle identification system applying DIRC\ud detectors will allow pion/kaon separation up to 4 GeV/c. A Barrel DIRC with fused silica radiator bars or plates will surround the target at a radial distance of 48 cm and will cover a polar\ud angle range of 22 to 140 degrees; a novel Endcap Disk DIRC built of a segmented fused silica\ud disk of 210 cm diameter will be installed in the forward region to cover the polar angles from\ud 5 to 22 degrees. The design…
Frontend electronics for high-precision single photo-electron timing using FPGA-TDCs
Abstract The next generation of high-luminosity experiments requires excellent particle identification detectors which calls for Imaging Cherenkov counters with fast electronics to cope with the expected hit rates. A Barrel DIRC will be used in the central region of the Target Spectrometer of the planned PANDA experiment at FAIR. A single photo-electron timing resolution of better than 100 ps is required by the Barrel DIRC to disentangle the complicated patterns created on the image plane. R&D studies have been performed to provide a design based on the TRB3 readout using FPGA-TDCs with a precision better than 20 ps RMS and custom frontend electronics with high-bandwidth pre-amplifiers and …
Lifetime of MCP-PMTs and other performance features
The ANDA experiment at FAIR will use DIRC detectors for the separation of hadrons. The compactness of the ANDA detector requires the image planes of these detectors to be placed inside the magnetic field of the solenoid. Due to this and other boundary conditions MCP-PMTs were identified as the only suitable photon sensors. Until recently the major obstacle for an application of MCP-PMTs in high rate experiments like ANDA were serious aging problems which led to damage at the photo-cathode and a fast declining quantum efficiency as the integrated anode charge (IAC) increased. With new countermeasures against the aging, in particular due to the application of an atomic layer deposition (ALD) …
New developments of the PANDA Disc DIRC detector
The DIRC principle (Detection of Internally Reflected Cherenkov light) allows a very compact\ud approach for particle identification detectors. The PANDA detector at the future FAIR facility at\ud GSI will use a Barrel-DIRC for the central region and a Disc DIRC for the forward angular region\ud between 5◦\ud and 22◦\ud . It will be the first time that a Disc DIRC is used in a high performance 4π\ud detector. To achieve this aim, different designs and technologies have been evaluated and tested.\ud This article will focus on the mechanical design and integration of the Disc DIRC with respect to\ud the PANDA environment.
Improved lifetime of microchannel-plate PMTs
Abstract The charged particle identification at the PANDA experiment will be mainly performed with DIRC detectors. Because of their advantageous properties the preferred photon sensors are MCP-PMTs. However, until recently these devices showed serious aging problems which resulted in a diminishing quantum efficiency (QE) of the photo cathode. By applying innovative countermeasures against the aging causes, the manufacturers recently succeeded in drastically improving the lifetime of MCP-PMTs. Especially the application of an ALD coating technique to seal the material of the micro-channels proves very powerful and results in a lifetime of ≈ 6 C / cm 2 integrated anode charge without a substa…
Resolution changes of MCP-PMTs in magnetic fields
Micro-channel plate photomultiplier tubes (MCP-PMTs) are chosen in many applications that have to cope with strong magnetic fields. The DIRC detectors of the PANDA experiment plan to employ them as they show excellent timing characteristics, radiation hardness, relatively low dark count rates and sufficient lifetime. This article mainly focuses on the performance of the position reconstruction of detected photons. Two different MCP-PMTs with segmented anode geometries have been tested in magnetic fields of different strengths. The variation of their performance has been studied. The measurements show improved position resolution and image shifts with increasing magnetic field strength.
The Barrel DIRC of PANDA
Cooled antiproton beams of unprecedented intensities in the momentum range of 1.5-15 GeV/c will be used for the PANDA experiment at FAIR to perform high precision experiments in the charmed quark sector. The PANDA detector will investigate antiproton annihilations with beams in the momentum range of 1.5 GeV/c to 15 GeV/c on a fixed target. An almost 4π acceptance double spectrometer is divided in a forward spectrometer and a target spectrometer. The charged particle identification in the latter is performed by ring imaging Cherenkov counters employing the DIRC principle.
Simulation and reconstruction of the PANDA Barrel DIRC
Hadronic particle identification (PID) in the barrel region of the PANDA experiment at the new Facility for Antiproton and Ion Research in Europe (FAIR) at GSI, Darmstadt will be provided by a DIRC (Detection of Internally Reflected Cherenkov light) counter. To optimize the performance and reduce the detector cost, detailed simulations of different design elements, such as the width of the radiators, the shape of the expansion volume, and the type of focusing system, were performed using Geant. Custom reconstruction algorithms were developed to match the detector geometry. We will discuss the single photon resolution and photon yield as well as the PID performance for the Barrel DIRC baseli…
Endcap Disc DIRC for PANDA at FAIR
The Endcap Disc DIRC (EDD) has been developed to provide an excellent particle identification in the future PANDA experiment by separating pions and kaons up to a momentum of 4 GeV/c with a separation power of 3 s.d.. The detector is placed in the forward endcap of the PANDA target spectrometer. It consists of a fused silica plate and focusing elements placed at the outer rim, which focus the Cherenkov light on the photo cathodes of the attached MCP-PMTs. A compact and fast readout of the signals is realized with special ASICs. The performance has been studied and validated with different prototype setups in various testbeam facilities.
Frontend Electronics for high-precision single photo-electron timing
The next generation of high-luminosity experiments requires excellent particle identification detectors, which calls for imaging Cherenkov counters with fast electronics to cope with the expected hit rates. A Barrel DIRC will be used in the central region of the Target Spectrometer\ud of the planned PANDA experiment at FAIR. A single photo-electron timing resolution of better\ud than 100 ps RMS is required for the Barrel DIRC to disentangle the complicated patterns created\ud on the image plane. R&D studies have been performed to provide a design based on the TRB3\ud readout using FPGA-TDCs with a typical precision of 10 ps RMS and custom frontend electronics with high-bandwidth pre-amp…