0000000001287598

AUTHOR

Amber Begtrup

showing 6 related works from this author

Bi-allelic JAM2 Variants Lead to Early-Onset Recessive Primary Familial Brain Calcification

2020

International audience; Primary familial brain calcification (PFBC) is a rare neurodegenerative disorder characterized by a combination of neurological, psychiatric, and cognitive decline associated with calcium deposition on brain imaging. To date, mutations in five genes have been linked to PFBC. However, more than 50% of individuals affected by PFBC have no molecular diagnosis. We report four unrelated families presenting with initial learning difficulties and seizures and later psychiatric symptoms, cerebellar ataxia, extrapyramidal signs, and extensive calcifications on brain imaging. Through a combination of homozygosity mapping and exome sequencing, we mapped this phenotype to chromo…

0301 basic medicineMaleCerebellumPathology[SDV]Life Sciences [q-bio]recessive brain calcificationMice0302 clinical medicineCognitive declineAge of OnsetChildGenetics (clinical)Exome sequencingComputingMilieux_MISCELLANEOUSBrain Diseasesprimary familial brain calcificationMalalties neurodegenerativesBrainFahr diseaseCalcinosisOCLNNeurodegenerative DiseasesHuman brainMiddle AgedPedigree[SDV] Life Sciences [q-bio]medicine.anatomical_structureKnockout mouseFemalemedicine.symptomAdultmedicine.medical_specialtyAdolescentGenes RecessiveNeuropathologyBiologyCalcificacióCalcification03 medical and health sciencesBasal Ganglia DiseasesReportGeneticsmedicineAnimalsHumansAllelesSLC20A2Cerebellar ataxiaknock out mouse modelmedicine.diseaseJAM2030104 developmental biologyFahr disease; familial idiopathic basal ganglia calcification; JAM2; JAM3; knock out mouse model; MYORG; OCLN; primary familial brain calcification; recessive brain calcification; SLC20A2familial idiopathic basal ganglia calcificationJAM3MYORGXenotropic and Polytropic Retrovirus ReceptorCell Adhesion Molecules030217 neurology & neurosurgeryCalcification
researchProduct

STAG1 mutations cause a novel cohesinopathy characterised by unspecific syndromic intellectual disability

2017

Item does not contain fulltext BACKGROUND: Cohesinopathies are rare neurodevelopmental disorders arising from a dysfunction in the cohesin pathway, which enables chromosome segregation and regulates gene transcription. So far, eight genes from this pathway have been reported in human disease. STAG1 belongs to the STAG subunit of the core cohesin complex, along with five other subunits. This work aimed to identify the phenotype ascribed to STAG1 mutations. METHODS: Among patients referred for intellectual disability (ID) in genetics departments worldwide, array-comparative genomic hybridisation (CGH), gene panel, whole-exome sequencing or whole-genome sequencing were performed following the …

0301 basic medicineGeneticsMutationCohesin complexPoint mutationBiologymedicine.diseasemedicine.disease_causeBioinformaticsFrameshift mutation03 medical and health sciences030104 developmental biology0302 clinical medicineIntellectual disabilityGeneticsmedicineJournal ArticleMissense mutationGene030217 neurology & neurosurgeryGenetics (clinical)Exome sequencingRare cancers Radboud Institute for Health Sciences [Radboudumc 9]Journal of Medical Genetics
researchProduct

Autosomal-Recessive Mutations in AP3B2, Adaptor-Related Protein Complex 3 Beta 2 Subunit, Cause an Early-Onset Epileptic Encephalopathy with Optic At…

2016

International audience; Early-onset epileptic encephalopathy (EOEE) represents a heterogeneous group of severe disorders characterized by seizures, interictal epileptiform activity with a disorganized electroencephalography background, developmental regression or retardation, and onset before 1 year of age. Among a cohort of 57 individuals with epileptic encephalopathy, we ascertained two unrelated affected individuals with EOEE associated with developmental impairment and autosomal-recessive variants in AP3B2 by means of whole-exome sequencing. The targeted sequencing of AP3B2 in 86 unrelated individuals with EOEE led to the identification of an additional family. We gathered five addition…

0301 basic medicineMaleMicrocephalyDevelopmental DisabilitiesPostnatal microcephalycopper-metabolismEpilepsy0302 clinical medicineexpansionhermansky-pudlak-syndromeddc:576.5Age of OnsetChilddisordersGenetics (clinical)seizuresGeneticsMEDNIK syndromeSyndrome3. Good healthPedigreeintellectual disabilityChild Preschoolmednik syndromeMicrocephalyFemaleDevelopmental regressionAdaptor Protein Complex 3Genes RecessiveBiologyAP3B103 medical and health sciencesAtrophyReport[ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathologyGeneticsmedicineHumansAdaptor Protein Complex beta SubunitsmousediseaseEpilepsyap-4 deficiencyInfant NewbornInfantmedicine.diseaseOptic Atrophy030104 developmental biologyMutationHermansky–Pudlak syndrome030217 neurology & neurosurgery[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

New insights into the clinical and molecular spectrum of the novel CYFIP2-related neurodevelopmental disorder and impairment of the WRC-mediated acti…

2021

International audience; Purpose: A few de novo missense variants in the cytoplasmic FMRP-interacting protein 2 (CYFIP2) gene have recently been described as a novel cause of severe intellectual disability, seizures, and hypotonia in 18 individuals, with p.Arg87 substitutions in the majority.Methods: We assembled data from 19 newly identified and all 18 previously published individuals with CYFIP2 variants. By structural modeling and investigation of WAVE-regulatory complex (WRC)-mediated actin polymerization in six patient fibroblast lines we assessed the impact of CYFIP2 variants on the WRC.Results: Sixteen of 19 individuals harbor two previously described and 11 novel (likely) disease-ass…

0301 basic medicine[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/NeurobiologyWAVEregulatory complex (WRC)030105 genetics & heredityBiologyArticleIntellectual disability; Epilepsy; CYFIP2; WAVE-regulatory complex (WRC); WASF03 medical and health sciencesNeurodevelopmental disorderSeizuresWAVE-regulatory complex (WRC)medicineCYFIP2Missense mutationHumansGenetics(clinical)WASFGeneGenetics (clinical)ActinAdaptor Proteins Signal TransducingGenetics/dk/atira/pure/subjectarea/asjc/2700/2716medicine.diseaseActin cytoskeletonPhenotypeHypotoniaActins3. Good healthddc:030104 developmental biology[SDV.BDD.EO]Life Sciences [q-bio]/Development Biology/Embryology and OrganogenesisNeurodevelopmental Disordersintellectual disabilityCYFIP2epilepsymedicine.symptom
researchProduct

Missense variants in TAF1 and developmental phenotypes: Challenges of determining pathogenicity

2019

We recently described a new neurodevelopmental syndrome (TAF1/MRXS33 intellectual disability syndrome) (MIM# 300966) caused by pathogenic variants involving the X-linked gene TAF1, which participates in RNA polymerase II transcription. The initial study reported eleven families, and the syndrome was defined as presenting early in life with hypotonia, facial dysmorphia, and developmental delay that evolved into intellectual disability (ID) and/or autism spectrum disorder (ASD). We have now identified an additional 27 families through a genotype-first approach. Familial segregation analysis, clinical phenotyping, and bioinformatics were capitalized on to assess potential variant pathogenicity…

Genetics0303 health sciencesHeart malformation030305 genetics & heredityBiologymedicine.diseaseArticleHypotonia03 medical and health sciencesAutism spectrum disorderHuman Phenotype OntologyIntellectual disabilityGeneticsmedicineCopy-number variationAllelemedicine.symptomGenetics (clinical)Exome sequencing030304 developmental biologyHuman Mutation
researchProduct

A Recurrent De Novo PACS2 Heterozygous Missense Variant Causes Neonatal-Onset Developmental Epileptic Encephalopathy, Facial Dysmorphism, and Cerebel…

2018

International audience; Developmental and epileptic encephalopathies (DEEs) represent a large clinical and genetic heterogeneous group of neurodevelopmental diseases. The identification of pathogenic genetic variants in DEEs remains crucial for deciphering this complex group and for accurately caring for affected individuals (clinical diagnosis, genetic counseling, impacting medical, precision therapy, clinical trials, etc.). Whole-exome sequencing and intensive data sharing identified a recurrent de novo PACS2 heterozygous missense variant in 14 unrelated individuals. Their phenotype was characterized by epilepsy, global developmental delay with or without autism, common cerebellar dysgene…

Male0301 basic medicinePathologyPACS-2Vesicular Transport ProteinsPHENOTYPEBioinformaticsDISEASESensory disorders Donders Center for Medical Neuroscience [Radboudumc 12]Epilepsy0302 clinical medicineMissense mutationGlobal developmental delayAge of OnsetChildGenetics (clinical)Epileptic encephalopathyAPOPTOSIS3. Good healthcerebellar dysgenesisMutation Missense/geneticsintellectual disabilityChild PreschoolEpilepsy GeneralizedFemalePACS2CLINICAL EPILEPSYmedicine.medical_specialtyHeterozygoteGeneralized/geneticsPROTEINSGenetic counselingMutation MissenseMissense/geneticsNeonatal onsetBiologyDIAGNOSISVesicular Transport Proteins/geneticsFacial dysmorphism03 medical and health sciencesDysgenesisAll institutes and research themes of the Radboud University Medical CenterCerebellar DiseasesReportMENDELIAN DISORDERSGeneticsmedicineHumansGeneralized epilepsyPreschoolNeurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7]Cerebellar Diseases/geneticsbusiness.industryMUTATIONSInfant NewbornCorrectionInfantFaciesNewbornmedicine.disease030104 developmental biology[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsMutationepilepsyAutismbusinessEpilepsy Generalized/genetics030217 neurology & neurosurgery
researchProduct