Higher-order Organization in the Human Brain from Matrix-Based R\'enyi's Entropy
Pairwise metrics are often employed to estimate statistical dependencies between brain regions, however they do not capture higher-order information interactions. It is critical to explore higher-order interactions that go beyond paired brain areas in order to better understand information processing in the human brain. To address this problem, we applied multivariate mutual information, specifically, Total Correlation and Dual Total Correlation to reveal higher-order information in the brain. In this paper, we estimate these metrics using matrix-based R\'enyi's entropy, which offers a direct and easily interpretable approach that is not limited by direct assumptions about probability distr…