0000000001290703

AUTHOR

Miles J. De Blasio

0000-0002-4797-5193

showing 1 related works from this author

Stable Oxidative Cytosine Modifications Accumulate in Cardiac Mesenchymal Cells From Type2 Diabetes Patients

2018

Rationale: Human cardiac mesenchymal cells (CMSCs) are a therapeutically relevant primary cell population. Diabetes mellitus compromises CMSC function as consequence of metabolic alterations and incorporation of stable epigenetic changes. Objective: To investigate the role of α-ketoglutarate (αKG) in the epimetabolic control of DNA demethylation in CMSCs. Methods and Results: Quantitative global analysis, methylated and hydroxymethylated DNA sequencing, and gene-specific GC methylation detection revealed an accumulation of 5-methylcytosine, 5-hydroxymethylcytosine, and 5-formylcytosine in the genomic DNA of human CMSCs isolated from diabetic donors. Whole heart genomic DNA analysis reveale…

Male0301 basic medicinePhysiologyPopulationheartBiologyMixed Function OxygenasesCytosineMice03 medical and health sciencesProto-Oncogene ProteinsfibroblastsHuman Umbilical Vein Endothelial CellsAnimalsHumansMyocytes CardiacEpigeneticsEnzyme InhibitorseducationCells CulturedEpigenomicsDemethylationeducation.field_of_studyDNA methylationDNA methylation; epigenomics; fibroblasts; heart; hyperglycemia; metabolism; physiology; cardiology and cardiovascular medicineMesenchymal Stem CellsSettore MED/13 - ENDOCRINOLOGIABase excision repairMolecular biologyThymine DNA GlycosylaseMice Inbred C57BLHEK293 Cells030104 developmental biologyDNA demethylationDiabetes Mellitus Type 2epigenomicsDNA methylationKetoglutaric AcidshyperglycemiaThymine-DNA glycosylaseCardiology and Cardiovascular MedicineOxidation-ReductionmetabolismCirculation Research
researchProduct