0000000001293287

AUTHOR

Frédéric Auchère

showing 3 related works from this author

Linking Small-scale Solar Wind Properties with Large-scale Coronal Source Regions through Joint Parker Solar Probe–Metis/Solar Orbiter Observations

2022

Abstract The solar wind measured in situ by Parker Solar Probe in the very inner heliosphere is studied in combination with the remote-sensing observation of the coronal source region provided by the METIS coronagraph aboard Solar Orbiter. The coronal outflows observed near the ecliptic by Metis on 2021 January 17 at 16:30 UT, between 3.5 and 6.3 R ⊙ above the eastern solar limb, can be associated with the streams sampled by PSP at 0.11 and 0.26 au from the Sun, in two time intervals almost 5 days apart. The two plasma flows come from two distinct source regions, characterized by different magnetic field polarity and intensity at the coronal base. It follows that both the global and local p…

Magnetohydrodynamics (694)Settore FIS/05 - Astronomia E AstrofisicaAstronomi astrofysik och kosmologiSpace and Planetary ScienceSolar corona (1483)Space plasmas (1544)Solar wind (1534)Interplanetary turbulence (830)Astronomy Astrophysics and CosmologyAstronomy and AstrophysicsAlfven waves (23)Heliosphere (711)
researchProduct

On-Orbit Degradation of Solar Instruments

2013

International audience; We present the lessons learned about the degradation observed in several space solar missions, based on contributions at the Workshop about On-Orbit Degradation of Solar and Space Weather Instruments that took place at the Solar Terrestrial Centre of Excellence (Royal Observatory of Belgium) in Brussels on 3 May 2012. The aim of this workshop was to open discussions related to the degradation observed in Sun-observing instruments exposed to the effects of the space environment. This article summarizes the various lessons learned and offers recommendations to reduce or correct expected degradation with the goal of increasing the useful lifespan of future and ongoing s…

solar instruments[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]010504 meteorology & atmospheric sciencesFOS: Physical sciencesSolar missionSpace weatherSpace (commercial competition)7. Clean energy01 natural sciencesSpace explorationDegradationContaminationObservatory0103 physical sciencesAerospace engineeringInstrumentation and Methods for Astrophysics (astro-ph.IM)010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesbusiness.industryAstronomy and Astrophysicscon- taminationcalibrationspace environment[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceOrbit (dynamics)Environmental scienceAstrophysics - Instrumentation and Methods for AstrophysicsbusinessSpace environmentDegradation (telecommunications)SOLAR PHYSICS
researchProduct

Exploring the Solar Wind from Its Source on the Corona into the Inner Heliosphere during the First Solar Orbiter-Parker Solar Probe Quadrature

2021

This Letter addresses the first Solar Orbiter (SO) -- Parker Solar Probe (PSP) quadrature, occurring on January 18, 2021, to investigate the evolution of solar wind from the extended corona to the inner heliosphere. Assuming ballistic propagation, the same plasma volume observed remotely in corona at altitudes between 3.5 and 6.3 solar radii above the solar limb with the Metis coronagraph on SO can be tracked to PSP, orbiting at 0.1 au, thus allowing the local properties of the solar wind to be linked to the coronal source region from where it originated. Thanks to the close approach of PSP to the Sun and the simultaneous Metis observation of the solar corona, the flow-aligned magnetic fiel…

[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics::High Energy Astrophysical PhenomenaSolar windFOS: Physical sciencesSolar radiusSolar coronaAstrophysics01 natural scienceslaw.inventionCurrent sheetOrbiterMagnetohydrodynamicsInterplanetary turbulenceHeliospherePhysics - Space Physics[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph]law0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsCoronagraphSolar and Stellar Astrophysics (astro-ph.SR)Physics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsMagnetohydrodynamics; Space plasmas; Interplanetary turbulence; Solar corona; Heliosphere; Solar windAstronomy and AstrophysicsPlasma[PHYS.ASTR.SR]Physics [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]CoronaSpace Physics (physics.space-ph)[PHYS.PHYS.PHYS-SPACE-PH]Physics [physics]/Physics [physics]/Space Physics [physics.space-ph]Physics - Plasma PhysicsPlasma Physics (physics.plasm-ph)Solar windAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space PhysicsSpace plasmasAstrophysics::Earth and Planetary Astrophysics[PHYS.PHYS.PHYS-DATA-AN]Physics [physics]/Physics [physics]/Data Analysis Statistics and Probability [physics.data-an]Heliosphere
researchProduct