0000000001298812

AUTHOR

Andrzej Katrusiak

showing 45 related works from this author

Molecular association in low-temperature and high-pressure polymorphs of 1,1,1,2-tetrachloroethane

2010

Interactions and aggregation of 1,1,1,2-tetrachloroethane molecules, Cl3CCH2Cl, have been investigated at low temperature and high pressure. Isobaric and isochoric crystallizations led to two polymorphs, characterized by single-crystal X-ray diffraction. The low-temperature polymorph α is monoclinic, space group C2/c, with molecules orientationally disordered in two sites at the temperature independent 70:30 rate. In isothermal conditions (295 K) 1,1,1,2-tetrachloroethane freezes at 0.73 GPa. The high-pressure polymorph β is monoclinic, space group P21/c, with the molecules fully ordered. The molecular aggregation at varied thermodynamic conditions results from the interplay of halogen inte…

CrystallographyIsochoric processChemistryIntermolecular forceMolecular symmetryMelting pointMoleculeIsobaric processGeneral Materials ScienceGeneral ChemistryCondensed Matter PhysicsIsothermal processMonoclinic crystal systemCrystEngComm
researchProduct

Relations between compression and thermal contraction in 1,2,4-trichlorobenzene and melting of trichlorobenzene isomers

2015

The compression and thermal expansion of crystalline 1,2,4-trichlorobenzene, C6H3Cl3, 124TCB, investigated under isobaric and isothermal conditions, are in reverse relation, as for most of crystals, however, the isochoric strain along direction c is clearly different from those along a and b. Single crystals of 124TCB have been in situ grown under isochoric and isobaric conditions, at 270 K/0.1 MPa and 295 K/0.16 GPa, and also at 100 K/0.1 MPa and 295 K/0.64 GPa, when the unit-cell volume is similar. All crystallizations yielded the same phase, of monoclinic space group P21/n, with two symmetry-independent molecules (Z′ = 2). The structure is governed by Cl⋯Cl and Cl⋯H interactions and the …

ChemistryIsochoric processThermodynamicsTrichlorobenzeneGeneral ChemistryCondensed Matter PhysicsThermal expansionIsothermal processPhase (matter)medicineIsobaric processGeneral Materials Sciencemedicine.drugPhase diagramMonoclinic crystal systemCrystEngComm
researchProduct

High-pressurein-situcrystallization, structure and phase transitions in 1,2-dichloroethane

2004

AbstractThe single crystal of 1,2-dichloroethane, C2H4Cl2wasin-situcrystallized in a Merrill-Bassett diamond-anvil cell, and its structure determined at 0.7 GPa and 280 K. The crystals are monoclinic, space groupP21/c. The C2H4Cl2molecules in thes-transconformation are located at the inversion centers. The —H2C—CH2—ethylene group is disordered in two sites, with equal occupancies, one rotated by 180° to the other about the Cl⋯Cl axis of the molecule. The crystal cohesion forces have been attributed mainly to Cl⋯Cl intermolecular interactions, and their role in the mechanism of the phase transition at 177 K has been analysed. It was found that the order-disorder phase transition in the struc…

Phase transitionChemistryIntermolecular forceSpace groupCondensed Matter Physicslaw.inventionInorganic ChemistryCrystalCrystallographylawPhase (matter)General Materials ScienceCrystallizationSingle crystalMonoclinic crystal systemZeitschrift für Kristallographie - Crystalline Materials
researchProduct

Crystalline gas of 1,1,1-trichloroethane

2011

Isobaric freezing of 1,1,1-trichloroethane yields crystals where all the intermolecular contacts are much longer than the sums of the van der Waals radii and only in the structure compressed to ca. 1.2 GPa do the first Cl⋯Cl contacts become commensurate with this sum. This sheds new light on the range of intermolecular interactions that are capable of controlling molecular re-orientation and arrangement.

Crystallographysymbols.namesakeRange (particle radiation)ChemistryChemical physicsIntermolecular forcesymbolsIsobaric processGeneral Materials ScienceVan der Waals radiusGeneral ChemistryCondensed Matter PhysicsCrystEngComm
researchProduct

Chemistry of density : extension and structural origin of Carnelley's rule in chloroethanes

2012

Low-density liquids and solids, with all intermolecular contacts longer than the sum of van der Waals radii, are formed by all ethanes chlorinated at one locant: CH2ClCH3, CHCl2CH3 and CCl3CH3. The concepts of molecular symmetry described by Carnelley and that of point groups have been compared. Carnelley's rule, when applied to liquid and solid chloroethanes clearly reveals the density dependence on the presence of intermolecular Cl⋯Cl and H⋯Cl short contacts, or their absence due to steric hindrances of overcrowded substituents. At 2.62 GPa, CH2ClCH3 freezes directly into phase II, with molecules arranged into layers with short Cl⋯Cl, H⋯Cl and H⋯H contacts. Only for CH2ClCH3, both the low…

Steric effectsChemistryIntermolecular forceGeneral ChemistryCondensed Matter PhysicsPoint groupLocantsymbols.namesakeComputational chemistryChemical physicsPhase (matter)Molecular symmetrysymbolsMoleculeGeneral Materials ScienceVan der Waals radiusCrystEngComm
researchProduct

Halogen...halogen interactions in pressure-frozen ortho- and meta-dichlorobenzene isomers.

2007

Isomers 1,2-dichlorobenzene (o-DCB) and 1,3-dichlorobenzene (m-DCB) were high-pressure frozen in-situ in a Merrill–Bassett diamond–anvil cell and their structures determined at room temperature and at 0.18 (5) GPa for o-DCB, and 0.17 (5) GPa for m-DCB by single-crystal X-ray diffraction. The patterns of halogen...halogen intermolecular interactions in these structures can be considered to be the main cohesive forces responsible for the molecular arrangements in these crystals. The molecular packing of dichlorobenzene isomers, including three polymorphs of 1,4-dichlorobenzene (p-DCB), have been compared and relations between their molecular symmetry, packing arrangements, intermolecular inte…

Steric effectspressure-crystallization methodhigh-pressure crystal structureStereochemistryChemistryIntermolecular forcehalogen...halogen intermolecular interactionsstructure-property relationsGeneral MedicineCrystal structureGeneral Biochemistry Genetics and Molecular BiologyDichlorobenzeneCrystallographyMolecular geometryMolecular symmetryMelting pointMoleculeActa crystallographica. Section B, Structural science
researchProduct

In-situ pressure crystallization and X-ray diffraction study of 1,1,2,2-tetrachloroethane at 0.5 GPa

2004

Abstract 1,1,2,2-Tetrachloroethane, C2H2Cl4 (denoted TCE, m.p. 230 K) has been in-situ pressure crystallized in a Merrill-Bassett diamond-anvil cell, and its structure has been determined at 0.5 GPa and 295 K from the single-crystal X-ray diffraction data. TCE crystallizes in the monoclinic space group P21 /c with the molecules located at the inversion centers. The molecules are in the s-trans conformation, while they assume the gauche conformation in the crystal obtained by cooling. This implies that a phase transition may exist between the low-temperature and high-pressure phases of TCE. In the high-pressure phase the HC–CH moiety of the C2H2Cl4 molecule is disordered in two sites, one re…

Phase transitionChemistryIntermolecular forceCondensed Matter Physicslaw.inventionInorganic ChemistryCrystalCrystallographylawPhase (matter)X-ray crystallographyMoleculeGeneral Materials ScienceCrystallizationMonoclinic crystal systemZeitschrift Fur Kristallographie
researchProduct

1,1-Dichloroethane: a molecular crystal structure without van der Waals contacts?

2008

Isochoric and isobaric freezing of 1,1-dichloroethane, CH3CHCl2, mp = 176.19 K, yielded the orthorhombic structure, space group Pnma, with the fully ordered molecules, in the staggered conformation, located on mirror planes. The CH3CHCl2 ambient-pressure (0.1 MPa) structures were determined at 160 and 100 K, whereas the 295 K high-pressure structures were determined at 0.59 and 1.51 GPa. At 0.1 MPa, all intermolecular distances are considerably longer than the sums of the van der Waals radii, and only a pressure of about 1.5 GPa squeezed the Cl···Cl and Cl···H contacts to distances commensurate with these sums. The exceptionally large difference between the melting points of isomeric 1,1- a…

chemistry.chemical_classificationChemistryIntermolecular forceAtoms in moleculesVan der Waals strainVan der Waals surfaceSurfaces Coatings and FilmsTheorem of corresponding statessymbols.namesakeCrystallographyMaterials ChemistrysymbolsNon-covalent interactionsVan der Waals radiusPhysical and Theoretical Chemistryvan der Waals forceThe journal of physical chemistry. B
researchProduct

Pressure-Stabilized Solvates of Xylazine Hydrochloride

2016

High pressure strongly favors the highest-density polymorph Z of active pharmaceutical ingredient 2-(2,6-xylidino)-5,6-dihydro-4H-1,3-thiazine hydrochloride (xylazine hydrochloride, XylHCl) up to about 0.1 GPa only, but still higher pressure destabilizes this structure. Above 0.1 GPa, XylHCl preferentially crystallizes as solvates with CH2Cl2, CHCl3, or (CH3)2CHOH depending on the solvent used. However, when XylHCl·H2O is dissolved in any of these solvents, the high-pressure crystallizations yield the hydrate XylHCl·H2O only. The single crystals of the CH2Cl2, CHCl3, and (CH3)2CHOH solvates could be grown in situ in a diamond anvil cell, which allowed their structure determination from the …

Active ingredientPhase transitionChemistryHydrochloride02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesXylazine Hydrochloride0104 chemical sciencesSolventCrystallographychemistry.chemical_compoundHigh pressureYield (chemistry)General Materials Science0210 nano-technologyHydrateCrystal Growth & Design
researchProduct

Halogen and hydrogen bonds in compressed pentachloroethane

2016

In pentachloroethane, C2HCl5, high pressure initially strongly compresses the C–H⋯Cl bonds in phase I; however, in phase II which is stable above 0.62 GPa the role of hydrogen bonds is diminished and molecular aggregation is dominated by halogen bonds Cl⋯Cl. Both phases have been determined by X-ray diffraction and the phase diagram of C2HCl5 has been outlined. The transition between phases I and II retains some relation between their structures and reduces the symmetry from class mmm (space group Pnma) to 2/m (space group P21/n11). The discontinuous transition, with the shear strain exceeding 21°, is so strong that its progress can be visually observed even for powdered samples. The single…

DiffractionHydrogen bondPentachloroethane02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSymmetry (physics)0104 chemical scienceschemistry.chemical_compoundCrystallographychemistryGroup (periodic table)Phase (matter)HalogenGeneral Materials Science0210 nano-technologyPhase diagramCrystEngComm
researchProduct

Conformational polymorphs of 1,1,2,2-tetrachloroethane: pressure vs. temperature.

2011

Directional Cl···Cl type I and II interactions govern the low-density aggregation of 1,1,2,2-tetrachloroethane molecules in synclinal conformation in the crystalline state at low temperature, whereas the dense molecular packing in high-pressure is achieved for the antiperiplanar conformers and electrostatically less favored Cl···Cl contacts. The mechanism of transformation between loose and dense associations involves the collapse of Cl···Cl contacts and conformational conversion.

EthaneChemistry1122-TetrachloroethaneMetals and AlloysChemieMolecular ConformationTemperatureGeneral ChemistryCrystallography X-RayCatalysisMolecular conformationSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCrystallographychemistry.chemical_compoundChloridesAlkane stereochemistryMaterials ChemistryCeramics and CompositesHydrocarbons ChlorinatedPressureMoleculeConformational isomerismChemical communications (Cambridge, England)
researchProduct

Energetics of conformational conversion between 1,1,2-trichloroethane polymorphs

2008

Pressure-induced transformations between gauche-, gauche+ and transoid conformations have been evidenced by X-ray single-crystal diffraction for 1,1,2-trichloroethane, and the energies of intermolecular interactions, conformational conversion, and the latent heat have been determined.

Diffraction112-TrichloroethaneEnergeticsIntermolecular forceMolecular ConformationMetals and AlloysGeneral ChemistryCrystallography X-RayCatalysisSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialschemistry.chemical_compoundCrystallographychemistryComputational chemistryLatent heatMaterials ChemistryCeramics and CompositesTrichloroethanesChemical Communications
researchProduct

Properties and interactions – melting point of tri­bromo­benzene isomers

2021

The melting points of tri­bromo­benzene isomers are correlated with the number, nature and distribution of intermolecular interactions in their structures.

chemistry.chemical_classificationHalogen bondtribromobenzene isomersChemistryIntermolecular forcemelting pointMetals and AlloysClose-packing of equal spheresResearch PapersAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsCrystalmolecular symmetryCrystallographynoncovalent interactionsMaterials ChemistryMelting pointMolecular symmetrystructure-property relationshipNon-covalent interactionsMoleculehalogen bondActa Crystallographica Section B-Structural Science Crystal Engineering and Materials
researchProduct

Loose crystals engineered by mismatched halogen bonds in hexachloroethane

2018

Distortions of the directional requirements in halogen⋯halogen contacts between hexachloroethane (HCE), C2Cl6, molecules lead to a loose crystal under ambient conditions. Single-crystal X-ray diffraction shows that the orthorhombic HCE phase of space group Pnma, with the molecules in the staggered conformation, extends at least from 85 to 305 K and from 0.1 MPa to 5.42 GPa. At ambient pressure, all intermolecular distances are longer than the sum of van der Waals radii, reached only at the pressure of ca. 1.2 GPa.

Materials scienceIntermolecular force02 engineering and technologyGeneral ChemistryStaggered conformation010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences0104 chemical sciencesCrystalCrystallographysymbols.namesakePhase (matter)symbolsMoleculeGeneral Materials ScienceOrthorhombic crystal systemVan der Waals radius0210 nano-technologyAmbient pressureCrystEngComm
researchProduct

CCDC 1454091: Experimental Crystal Structure Determination

2016

Related Article: Anna Olejniczak, Kristine Krukle-Berzina, Andrzej Katrusiak|2016|Cryst.Growth Des.|16|3756|doi:10.1021/acs.cgd.6b00264

Space GroupCrystallographyCrystal SystemCrystal StructureN-(26-dimethylphenyl)-13-thiazinan-2-iminium chloride propan-2-ol solvateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1454081: Experimental Crystal Structure Determination

2016

Related Article: Anna Olejniczak, Kristine Krukle-Berzina, Andrzej Katrusiak|2016|Cryst.Growth Des.|16|3756|doi:10.1021/acs.cgd.6b00264

Space GroupCrystallographyCrystal System2-((26-dimethylphenyl)amino)-56-dihydro-4H-13-thiazin-3-ium chloride chloroform solvateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1582519: Experimental Crystal Structure Determination

2017

Related Article: Maciej Bujak, Marcin Podsiadło, Andrzej Katrusiak|2018|CrystEngComm|20|328|doi:10.1039/C7CE01980G

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametershexachloroethaneExperimental 3D Coordinates
researchProduct

CCDC 1028850: Experimental Crystal Structure Determination

2015

Related Article: Maciej Bujak, Marcin Podsiadło, Andrzej Katrusiak|2015|CrystEngComm|17|3446|doi:10.1039/C4CE02289K

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters124-trichlorobenzeneExperimental 3D Coordinates
researchProduct

CCDC 1582517: Experimental Crystal Structure Determination

2017

Related Article: Maciej Bujak, Marcin Podsiadło, Andrzej Katrusiak|2018|CrystEngComm|20|328|doi:10.1039/C7CE01980G

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametershexachloroethaneExperimental 3D Coordinates
researchProduct

CCDC 1477289: Experimental Crystal Structure Determination

2016

Related Article: Maciej Bujak, Marcin Podsiadło, Andrzej Katrusiak|2016|CrystEngComm|18|5393|doi:10.1039/C6CE01025C

Space GroupCrystallographyCrystal System11122-pentachloroethaneCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1582518: Experimental Crystal Structure Determination

2017

Related Article: Maciej Bujak, Marcin Podsiadło, Andrzej Katrusiak|2018|CrystEngComm|20|328|doi:10.1039/C7CE01980G

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametershexachloroethaneExperimental 3D Coordinates
researchProduct

CCDC 1028853: Experimental Crystal Structure Determination

2015

Related Article: Maciej Bujak, Marcin Podsiadło, Andrzej Katrusiak|2015|CrystEngComm|17|3446|doi:10.1039/C4CE02289K

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters124-trichlorobenzeneExperimental 3D Coordinates
researchProduct

CCDC 1454078: Experimental Crystal Structure Determination

2016

Related Article: Anna Olejniczak, Kristine Krukle-Berzina, Andrzej Katrusiak|2016|Cryst.Growth Des.|16|3756|doi:10.1021/acs.cgd.6b00264

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters2-((26-dimethylphenyl)amino)-56-dihydro-4H-13-thiazin-3-ium chlorideExperimental 3D Coordinates
researchProduct

CCDC 1454087: Experimental Crystal Structure Determination

2016

Related Article: Anna Olejniczak, Kristine Krukle-Berzina, Andrzej Katrusiak|2016|Cryst.Growth Des.|16|3756|doi:10.1021/acs.cgd.6b00264

Space GroupCrystallography2-((26-dimethylphenyl)amino)-56-dihydro-4H-13-thiazin-3-ium chloride monohydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1582515: Experimental Crystal Structure Determination

2017

Related Article: Maciej Bujak, Marcin Podsiadło, Andrzej Katrusiak|2018|CrystEngComm|20|328|doi:10.1039/C7CE01980G

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametershexachloroethaneExperimental 3D Coordinates
researchProduct

CCDC 1477285: Experimental Crystal Structure Determination

2016

Related Article: Maciej Bujak, Marcin Podsiadło, Andrzej Katrusiak|2016|CrystEngComm|18|5393|doi:10.1039/C6CE01025C

Space GroupCrystallographyCrystal System11122-pentachloroethaneCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1454090: Experimental Crystal Structure Determination

2016

Related Article: Anna Olejniczak, Kristine Krukle-Berzina, Andrzej Katrusiak|2016|Cryst.Growth Des.|16|3756|doi:10.1021/acs.cgd.6b00264

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters2-((26-dimethylphenyl)amino)-56-dihydro-4H-13-thiazin-3-ium chloride propan-2-ol solvateExperimental 3D Coordinates
researchProduct

CCDC 1028851: Experimental Crystal Structure Determination

2015

Related Article: Maciej Bujak, Marcin Podsiadło, Andrzej Katrusiak|2015|CrystEngComm|17|3446|doi:10.1039/C4CE02289K

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters124-trichlorobenzeneExperimental 3D Coordinates
researchProduct

CCDC 1454088: Experimental Crystal Structure Determination

2016

Related Article: Anna Olejniczak, Kristine Krukle-Berzina, Andrzej Katrusiak|2016|Cryst.Growth Des.|16|3756|doi:10.1021/acs.cgd.6b00264

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters2-((26-dimethylphenyl)amino)-56-dihydro-4H-13-thiazin-3-ium chloride propan-2-ol solvateExperimental 3D Coordinates
researchProduct

CCDC 1454089: Experimental Crystal Structure Determination

2016

Related Article: Anna Olejniczak, Kristine Krukle-Berzina, Andrzej Katrusiak|2016|Cryst.Growth Des.|16|3756|doi:10.1021/acs.cgd.6b00264

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters2-((26-dimethylphenyl)amino)-56-dihydro-4H-13-thiazin-3-ium chloride propan-2-ol solvateExperimental 3D Coordinates
researchProduct

CCDC 1582521: Experimental Crystal Structure Determination

2017

Related Article: Maciej Bujak, Marcin Podsiadło, Andrzej Katrusiak|2018|CrystEngComm|20|328|doi:10.1039/C7CE01980G

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametershexachloroethaneExperimental 3D Coordinates
researchProduct

CCDC 1454079: Experimental Crystal Structure Determination

2016

Related Article: Anna Olejniczak, Kristine Krukle-Berzina, Andrzej Katrusiak|2016|Cryst.Growth Des.|16|3756|doi:10.1021/acs.cgd.6b00264

Space GroupCrystallographyCrystal System2-((26-dimethylphenyl)amino)-56-dihydro-4H-13-thiazin-3-ium chloride chloroform solvateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1454080: Experimental Crystal Structure Determination

2016

Related Article: Anna Olejniczak, Kristine Krukle-Berzina, Andrzej Katrusiak|2016|Cryst.Growth Des.|16|3756|doi:10.1021/acs.cgd.6b00264

Space GroupCrystallographyCrystal SystemN-(26-dimethylphenyl)-13-thiazinan-2-iminium chloride chloroform solvateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1477287: Experimental Crystal Structure Determination

2016

Related Article: Maciej Bujak, Marcin Podsiadło, Andrzej Katrusiak|2016|CrystEngComm|18|5393|doi:10.1039/C6CE01025C

Space GroupCrystallographyCrystal System11122-pentachloroethaneCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1582516: Experimental Crystal Structure Determination

2017

Related Article: Maciej Bujak, Marcin Podsiadło, Andrzej Katrusiak|2018|CrystEngComm|20|328|doi:10.1039/C7CE01980G

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametershexachloroethaneExperimental 3D Coordinates
researchProduct

CCDC 1454085: Experimental Crystal Structure Determination

2016

Related Article: Anna Olejniczak, Kristine Krukle-Berzina, Andrzej Katrusiak|2016|Cryst.Growth Des.|16|3756|doi:10.1021/acs.cgd.6b00264

Space GroupCrystallography2-((26-dimethylphenyl)amino)-56-dihydro-4H-13-thiazin-3-ium chloride hydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1454086: Experimental Crystal Structure Determination

2016

Related Article: Anna Olejniczak, Kristine Krukle-Berzina, Andrzej Katrusiak|2016|Cryst.Growth Des.|16|3756|doi:10.1021/acs.cgd.6b00264

Space GroupCrystallography2-((26-dimethylphenyl)amino)-56-dihydro-4H-13-thiazin-3-ium chloride monohydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1454084: Experimental Crystal Structure Determination

2016

Related Article: Anna Olejniczak, Kristine Krukle-Berzina, Andrzej Katrusiak|2016|Cryst.Growth Des.|16|3756|doi:10.1021/acs.cgd.6b00264

Space GroupCrystallography2-((26-dimethylphenyl)amino)-56-dihydro-4H-13-thiazin-3-ium chloride monohydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1582520: Experimental Crystal Structure Determination

2017

Related Article: Maciej Bujak, Marcin Podsiadło, Andrzej Katrusiak|2018|CrystEngComm|20|328|doi:10.1039/C7CE01980G

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametershexachloroethaneExperimental 3D Coordinates
researchProduct

CCDC 1477286: Experimental Crystal Structure Determination

2016

Related Article: Maciej Bujak, Marcin Podsiadło, Andrzej Katrusiak|2016|CrystEngComm|18|5393|doi:10.1039/C6CE01025C

Space GroupCrystallographyCrystal System11122-pentachloroethaneCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1028852: Experimental Crystal Structure Determination

2015

Related Article: Maciej Bujak, Marcin Podsiadło, Andrzej Katrusiak|2015|CrystEngComm|17|3446|doi:10.1039/C4CE02289K

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters124-trichlorobenzeneExperimental 3D Coordinates
researchProduct

CCDC 1477284: Experimental Crystal Structure Determination

2016

Related Article: Maciej Bujak, Marcin Podsiadło, Andrzej Katrusiak|2016|CrystEngComm|18|5393|doi:10.1039/C6CE01025C

Space GroupCrystallographyCrystal System11122-pentachloroethaneCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1454082: Experimental Crystal Structure Determination

2016

Related Article: Anna Olejniczak, Kristine Krukle-Berzina, Andrzej Katrusiak|2016|Cryst.Growth Des.|16|3756|doi:10.1021/acs.cgd.6b00264

Space GroupCrystallography2-((26-dimethylphenyl)amino)-56-dihydro-4H-13-thiazin-3-ium chloride monohydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1477288: Experimental Crystal Structure Determination

2016

Related Article: Maciej Bujak, Marcin Podsiadło, Andrzej Katrusiak|2016|CrystEngComm|18|5393|doi:10.1039/C6CE01025C

Space GroupCrystallographyCrystal System11122-pentachloroethaneCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1454083: Experimental Crystal Structure Determination

2016

Related Article: Anna Olejniczak, Kristine Krukle-Berzina, Andrzej Katrusiak|2016|Cryst.Growth Des.|16|3756|doi:10.1021/acs.cgd.6b00264

Space GroupCrystallography2-((26-dimethylphenyl)amino)-56-dihydro-4H-13-thiazin-3-ium chloride monohydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct