0000000001298870
AUTHOR
Carsten Bolm
5-Carbonyl-1,3-oxazine-2,4-diones from N-Cyanosulfoximines and Meldrum’s Acid Derivatives
At elevated temperatures, N-cyanosulfoximines react with Meldrum's acid derivatives to give sulfoximines with N-bound 5-carbonyl-1,3-oxazine-2,4-dione groups. A representative product was characterized by single-crystal X-ray structure analysis. The product formation involves an unexpected molecular reorientation requiring several sequential bond-forming and -cleaving processes.
N-(2,3,5,6-Tetrafluoropyridyl)sulfoximines: synthesis, X-ray crystallography, and halogen bonding
In the presence of KOH, NH-sulfoximines react with pentafluoropyridine to give N-(tetrafluoropyridyl)sulfoximines (NTFP-sulfoximines) in moderate to excellent yields. Either a solution-based or a superior solvent-free mechanochemical protocol can be followed. X-Ray diffraction analyses of 26 products provided insight into the bond parameters and conformational rigidity of the molecular scaffold. In solid-state structures, sulfoximines with halo substituents on the S-bound arene are intermolecularly linked by C–X⋯OS (X = Cl, Br) halogen bonds. Hirshfeld surface analysis is used to assess the type of non-covalent contacts present in molecules. For mixtures of three different S-pyridyl-substit…
Regio- and Stereoselective Chloro Sulfoximidations of Terminal Aryl Alkynes Enabled by Copper Catalysis and Visible Light
Advanced synthesis & catalysis 2552-2556 (2021). doi:10.1002/adsc.202100162
1,2,6-Thiadiazine 1-Oxides: Unsaturated Three-Dimensional S,N-Heterocycles from Sulfonimidamides.
Unprecedented three-dimensional 1,2,6-thiadiazine 1-oxides have been prepared by an aza-Michael-addition/cyclization/condensation reaction sequence starting from sulfonimidamides and propargyl ketones. The products have been further functionalized by standard cross-coupling reactions, selective bromination of the heterocyclic ring, and conversion into a β-hydroxy substituted derivative. A representative product was characterized by single-crystal X-ray structure analysis. peerReviewed
The Preparation of Diaryl Sulfoxonium Triflates and Their Application in Palladium‐Catalyzed Cross‐Coupling Reactions
Chemistry 17(19), e202200828 (2022). doi:10.1002/asia.202200828
A copper-catalyzed interrupted domino reaction for the synthesis of fused triazolyl benzothiadiazine-1-oxides
Chemistry - a European journal 29(13), e202203729 (2023). doi:10.1002/chem.202203729
1,2‐Benzothiazine Derivatives from Sulfonimidamides by Metal‐Catalyzed Annulation Reactions in Solution and under Solvent‐Free Mechanochemical Conditions
Advanced synthesis & catalysis (2021). doi:10.1002/adsc.202001505 special issue: "Hot Topic: C-H Activation"
2,3-Dihydro-1,2,6-thiadiazine 1-Oxides by Biginelli-Type Reactions with Sulfonimidamides under Mechanochemical Conditions.
Biginelli-type multicomponent reactions (MCRs) with NH-free sulfonimidamides provide 2,3-dihydro-1,2,6-thiadiazine 1-oxides in high yields. The couplings are performed in a planetary ball mill under solvent-free mechanochemical conditions. Acetic acid or ytterbium triflate are used as catalysts. A representative product was characterized by X-ray single crystal structure analysis revealing molecular details of the highly functionalized three-dimensional heterocycle. Further product modifications lead to additional structural scaffolds.
Synthesis of trifluoromethyl-substituted 1,2,6-thiadiazine 1-oxides from sulfonimidamides under mechanochemical conditions
TBS-protected or NH-sulfonimidamides react with β-alkoxyvinyl trifluoromethylketones under solvent-free mechanochemical conditions to give 3-trifluoromethyl-substituted three-dimensional 1,2,6-thiadiazine 1-oxides. C4-Functionalized products can be obtained by starting from cyclic enones and brominations of the initially formed heterocycles. The stability of the products was investigated by varying the pH value and storage under aerobic conditions.
From One-Pot NH-Sulfoximidations of Thiophene Derivatives to Dithienylethene-Type Photoswitches
Thiophene NH-sulfoximines have been synthesized using a one-pot NH-sulfoximidation reaction of thiophenes. The reactivity of the products was investigated, and the developed protocols were used for the synthesis of a new class of dithienylethene-type photoswitches containing a sulfoximidoyl group.
Mechanochemical Syntheses of N-Containing Heterocycles with TosMIC
A mechanochemical van Leusen pyrrole synthesis with a base leads to 3,4-disubstitued pyrroles in moderate to excellent yields. The developed protocol is compatible with a range of electron-withdrawing groups and can also be applied to the synthesis of oxazoles. Attempts to mechanochemically convert the resulting pyrroles into porphyrins proved to be difficult.
Revisiting the bromination of 3β-hydroxycholest-5-ene with CBr4/PPh3 and the subsequent azidolysis of the resulting bromide, disparity in stereochemical behavior
Cholesterol reacts under Appel conditions (CBr4/PPh3) to give 3,5-cholestadiene (elimination) and 3β-bromocholest-5-ene (substitution with retention of configuration). Thus, the bromination of cholesterol deviates from the stereochemistry of the standard Appel mechanism due to participation of the Δ5 π-electrons. In contrast, the subsequent azidolysis (NaN3/DMF) of 3β-bromocholest-5-ene proceeds predominantly by Walden inversion (SN2) affording 3α-azidocholest-5-ene. The structures of all relevant products were revealed by X-ray single crystal structure analyses, and the NMR data are in agreement to the reported ones. In light of these findings, we herein correct the previous stereochemical…
Cyclic Sulfoximine and Sulfonimidamide Derivatives by Copper‐Catalyzed Cross‐Coupling Reactions with Elemental Sulfur
Copper-catalyzed cross-coupling reactions of α-bromoaryl NH-sulfoximines with elemental sulfur lead to benzo[d][1,3,2]dithiazole-1-oxides, which represent a new class of three-dimensional heterocycles. The reactions proceed under mild conditions showing good functional group and heterocycle tolerance. By imination/oxidation, the initial cross-coupling products can be converted to unprecedented cyclic sulfonimidamides derivatives. Furthermore, a seven-membered heterocycle was obtained by a ruthenium-catalyzed ring-expansion with ethyl propiolate. peerReviewed
5-Carbonyl-1,3-oxazine-2,4-diones from N-Cyanosulfoximines and Meldrum’s Acid Derivatives
At elevated temperatures, N-cyanosulfoximines react with Meldrum’s acid derivatives to give sulfoximines with N-bound 5-carbonyl-1,3-oxazine-2,4-dione groups. A representative product was characterized by single-crystal X-ray structure analysis. The product formation involves an unexpected molecular reorientation requiring several sequential bond-forming and -cleaving processes. peerReviewed
Syntheses of Trifluoroethylated N-Heterocycles from Vinyl Azides and Togni’s Reagent Involving 1,n-Hydrogen-Atom Transfer Reactions
2,2,2-Trifluoroethyl-substituted 3-oxazolines, 3-thiazolines, and 5,6-dihydro-2H-1,3-oxazines have been obtained by reacting substituted vinyl azides with a combination of Togni’s reagent and substoichiometric amounts of iron(II) chloride. The results of density functional theory calculations support the proposed mechanism involving 1,n-hydrogen-atom transfer reactions. peerReviewed
Synthesis of N‐Monosubstituted Sulfondiimines by Metal‐free Iminations of Sulfiliminium Salts
Sulfondiimines are marginalized entities among nitrogencontaining organosulfur compounds, despite offering promising properties for applications in various fields including medicinal and agrochemical. Herein, we present a metal-free and rapid synthetic procedure for the synthesis of N-monosubstituted sulfondiimines that overcomes current limitations in their synthetic accessibility. Particularly, S,S-dialkyl substrates, which are commonly difficult to convert by existing methods, react well with a combination of iodine, 1,8-diazabicyclo[5.4.0]undec-7-en (DBU), and iminoiodanes (PhINR) in acetonitrile (MeCN) to furnish the corresponding sulfondiimines in yields up to 85% (25 examples). Valua…
N-(2,3,5,6-Tetrafluoropyridyl)sulfoximines : synthesis, X-ray crystallography, and halogen bonding
In the presence of KOH, NH-sulfoximines react with pentafluoropyridine to give N-(tetrafluoropyridyl)sulfoximines (NTFP-sulfoximines) in moderate to excellent yields. Either a solution-based or a superior solvent-free mechanochemical protocol can be followed. X-Ray diffraction analyses of 26 products provided insight into the bond parameters and conformational rigidity of the molecular scaffold. In solid-state structures, sulfoximines with halo substituents on the S-bound arene are intermolecularly linked by C–X⋯O[double bond, length as m-dash]S (X = Cl, Br) halogen bonds. Hirshfeld surface analysis is used to assess the type of non-covalent contacts present in molecules. For mixtures of th…
2-Sulfoximidoyl Acetic Acids from Multicomponent Petasis Reactions and Their Use as Building Blocks in Syntheses of Sulfoximine Benzodiazepine Analogues.
Upon application of a multicomponent Petasis reaction, a broad range of NH-sulfoximines and boronic acids react with glyoxalic acid to afford the corresponding 2-substituted acetic acids with N-bound sulfoximidoyl groups. The protocol features excellent yields under ambient, metal-free conditions and short reaction times. Furthermore, the applicability of 2-sulfoximidoyl acetic acids as building blocks for synthesizing sulfoximine-based benzodiazepine analogues was demonstrated.
[3+2]‐Cycloadditions of N ‐Cyano Sulfoximines with 1,3‐Dipoles
Involving the cyano group of N‐cyano sulfoximines in [3+2]‐cycloaddition reactions with 1,3‐dipoles provides practical routes for the construction of 5‐membered heterocycles bearing sulfoximinoyl moieties. An ytterbium‐catalyzed cycloaddition utilizing hydrazonoyl chlorides was developed, as well as a reaction involving imidoyl chlorides proceeding without the aid of a catalyst. Following these protocols, a range of sulfoximines with N‐1,2,4‐triazolyl and N‐1,2,4‐oxadiazolyl substituents was prepared. peerReviewed
Three-Dimensional Heterocycles by 5-exo-dig Cyclizations of S-Methyl-N-ynonylsulfoximines
Upon treatment with Cs2CO3, S-methyl-N-ynonylsulfoximines undergo 5-exo-dig cyclizations to give three-dimensional heterocycles. The reactions proceed at ambient temperature with a wide range of substrates affording the corresponding products in good to excellent yields.
CCDC 2069302: Experimental Crystal Structure Determination
Related Article: Renè Hommelsheim, Heliana Michaela Núñez Ponce, Khai-Nghi Truong, Kari Rissanen, Carsten Bolm|2021|Org.Lett.|23|3415|doi:10.1021/acs.orglett.1c00874
CCDC 2169530: Experimental Crystal Structure Determination
Related Article: Renè Hommelsheim, Sandra Bausch, Arjuna Selvakumar, Mostafa Amer, Khai-Nghi Truong, Kari Rissanen, Carsten Bolm|2023|Chem.-Eur.J.|29|e202203729|doi:10.1002/chem.202203729
CCDC 2027290: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 2069303: Experimental Crystal Structure Determination
Related Article: Renè Hommelsheim, Heliana Michaela Núñez Ponce, Khai-Nghi Truong, Kari Rissanen, Carsten Bolm|2021|Org.Lett.|23|3415|doi:10.1021/acs.orglett.1c00874
CCDC 2027281: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 2027279: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 2169531: Experimental Crystal Structure Determination
Related Article: Renè Hommelsheim, Sandra Bausch, Arjuna Selvakumar, Mostafa Amer, Khai-Nghi Truong, Kari Rissanen, Carsten Bolm|2023|Chem.-Eur.J.|29|e202203729|doi:10.1002/chem.202203729
CCDC 2242257: Experimental Crystal Structure Determination
Related Article: Marco T. Passia, Niklas Bormann, Jas S. Ward, Kari Rissanen, Carsten Bolm|2023|Angew.Chem.,Int.Ed.|62||doi:10.1002/anie.202305703
CCDC 2027299: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 2027288: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 2225023: Experimental Crystal Structure Determination
Related Article: Peng Wu, Jas S. Ward, Kari Rissanen, Carsten Bolm|2023|Adv.Synth.Catal.|365|522|doi:10.1002/adsc.202201408
CCDC 2027300: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 2027289: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 2109381: Experimental Crystal Structure Determination
Related Article: Marco Thomas Passia, Jan-Hendrik Sch��bel, Niklas Julian Lentelink, Khai-Nghi Truong, Kari Rissanen, Carsten Bolm|2021|Org.Biomol.Chem.|19|9470|doi:10.1039/D1OB01912K
CCDC 2069304: Experimental Crystal Structure Determination
Related Article: Renè Hommelsheim, Heliana Michaela Núñez Ponce, Khai-Nghi Truong, Kari Rissanen, Carsten Bolm|2021|Org.Lett.|23|3415|doi:10.1021/acs.orglett.1c00874
CCDC 1985011: Experimental Crystal Structure Determination
Related Article: Jan-Hendrik Schöbel, Marco Thomas Passia, Nadja Anna Wolter, Rakesh Puttreddy, Kari Rissanen, Carsten Bolm|2020|Org.Lett.|22|2702|doi:10.1021/acs.orglett.0c00666
CCDC 2027291: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 2242258: Experimental Crystal Structure Determination
Related Article: Marco T. Passia, Niklas Bormann, Jas S. Ward, Kari Rissanen, Carsten Bolm|2023|Angew.Chem.,Int.Ed.|62||doi:10.1002/anie.202305703
CCDC 2027295: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 2027286: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 2034819: Experimental Crystal Structure Determination
Related Article: Peng Shi, Yongliang Tu, Duo Zhang, Chenyang Wang, Khai‐Nghi Truong, Kari Rissanen, Carsten Bolm|2021|Adv.Synth.Catal.|363|2552|doi:10.1002/adsc.202100162
CCDC 2092466: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Claude Molitor, Sabrina Smid, Khai-Nghi Truong, Kari Rissanen, Carsten Bolm|2021|J.Org.Chem.|86|14213|doi:10.1021/acs.joc.1c01529
CCDC 1894289: Experimental Crystal Structure Determination
Related Article: Bram Verbelen, Eric Siemes, Andreas Ehnbom, Christoph Räuber, Kari Rissanen, Dominik Wöll, Carsten Bolm|2019|Org.Lett.|21|4293|doi:10.1021/acs.orglett.9b01475
CCDC 2027297: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 2027322: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 2027278: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 2027296: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 2027285: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 2027298: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 2027277: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 2109331: Experimental Crystal Structure Determination
Related Article: Marco Thomas Passia, Jan-Hendrik Sch��bel, Niklas Julian Lentelink, Khai-Nghi Truong, Kari Rissanen, Carsten Bolm|2021|Org.Biomol.Chem.|19|9470|doi:10.1039/D1OB01912K
CCDC 1983428: Experimental Crystal Structure Determination
Related Article: Steven Terhorst, Deo Prakash Tiwari, Daniela Meister, Benedict Petran, Kari Rissanen, Carsten Bolm|2020|Org.Lett.|22|4766|doi:10.1021/acs.orglett.0c01566
CCDC 2027287: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 2027282: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 2027280: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 2027294: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 2062891: Experimental Crystal Structure Determination
Related Article: Felix Krauskopf, Khai-Nghi Truong, Kari Rissanen, Carsten Bolm|2021|Org.Lett.|23|2699|doi:10.1021/acs.orglett.1c00596
CCDC 2107284: Experimental Crystal Structure Determination
Related Article: Ding Ma, Deshen Kong, Chenyang Wang, Khai-Nghi Truong, Kari Rissanen, Carsten Bolm|2021|Org.Lett.|23|8287|doi:10.1021/acs.orglett.1c03041
CCDC 2027276: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 2034818: Experimental Crystal Structure Determination
Related Article: Peng Shi, Yongliang Tu, Duo Zhang, Chenyang Wang, Khai‐Nghi Truong, Kari Rissanen, Carsten Bolm|2021|Adv.Synth.Catal.|363|2552|doi:10.1002/adsc.202100162
CCDC 1993374: Experimental Crystal Structure Determination
Related Article: Felix Brosge, Johannes Florian Kochs, Mariela Bregu, Khai-Nghi Truong, Kari Rissanen, Carsten Bolm|2020|Org.Lett.|22|6667|doi:10.1021/acs.orglett.0c02504
CCDC 1984075: Experimental Crystal Structure Determination
Related Article: Felix Krauskopf, Khai-Nghi Truong, Kari Rissanen, Carsten Bolm|2020|Eur.J.Org.Chem.|2020|2761|doi:10.1002/ejoc.202000335
CCDC 2027284: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 2027292: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 2169543: Experimental Crystal Structure Determination
Related Article: Renè Hommelsheim, Sandra Bausch, Arjuna Selvakumar, Mostafa Amer, Khai-Nghi Truong, Kari Rissanen, Carsten Bolm|2023|Chem.-Eur.J.|29|e202203729|doi:10.1002/chem.202203729
CCDC 2169528: Experimental Crystal Structure Determination
Related Article: Renè Hommelsheim, Sandra Bausch, Arjuna Selvakumar, Mostafa Amer, Khai-Nghi Truong, Kari Rissanen, Carsten Bolm|2023|Chem.-Eur.J.|29|e202203729|doi:10.1002/chem.202203729
CCDC 2027293: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 2169529: Experimental Crystal Structure Determination
Related Article: Renè Hommelsheim, Sandra Bausch, Arjuna Selvakumar, Mostafa Amer, Khai-Nghi Truong, Kari Rissanen, Carsten Bolm|2023|Chem.-Eur.J.|29|e202203729|doi:10.1002/chem.202203729
CCDC 2169527: Experimental Crystal Structure Determination
Related Article: Renè Hommelsheim, Sandra Bausch, Arjuna Selvakumar, Mostafa Amer, Khai-Nghi Truong, Kari Rissanen, Carsten Bolm|2023|Chem.-Eur.J.|29|e202203729|doi:10.1002/chem.202203729
CCDC 2027283: Experimental Crystal Structure Determination
Related Article: Christian Schumacher, Hannah Fergen, Rakesh Puttreddy, Khai-Nghi Truong, Torsten Rinesch, Kari Rissanen, Carsten Bolm|2020|Org.Chem.Front.|7|3896|doi:10.1039/D0QO01139H
CCDC 2169532: Experimental Crystal Structure Determination
Related Article: Renè Hommelsheim, Sandra Bausch, Arjuna Selvakumar, Mostafa Amer, Khai-Nghi Truong, Kari Rissanen, Carsten Bolm|2023|Chem.-Eur.J.|29|e202203729|doi:10.1002/chem.202203729