0000000001298937
AUTHOR
Heikki M. Tuononen
Computational thermochemistry: extension of Benson group additivity approach to organoboron compounds and reliable predictions of their thermochemical properties
High-level computational data for standard gas phase enthalpies of formation, entropies, and heat capacities are reported for 116 compounds of boron. A comparison of the results with extant experimental and computational benchmark values reveals important trends and clear outliers. Recommendations are made to revise some of the key quantities, such as the enthalpies of formation of orthoboric acid, trimethylthioborate, and triphenylborane, the last of which is found to be considerably in error. The uncertainties associated with the experimental values are found to exceed those of high-level calculations by a clear margin, prompting the redetermination of Benson group additivity contribution…
Mono‐ and Bis(imidazolidinium ethynyl) Cations and Reduction of the Latter To Give an Extended Bis‐1,4‐([3]Cumulene)‐p-carboquinoid System
An extended π-system containing two [3]cumulene fragments separated by a p-carboquinoid and stabilized by two capping N-heterocyclic carbenes (NHCs) has been prepared. Mono- and bis(imidazolidinium ethynyl) cations have also been synthesized from the reaction of an NHC with phenylethynyl bromide or 1,4-bis(bromoethynyl)benzene. Cyclic voltammetry coupled with synthetic and structural studies showed that the dication is readily reduced to a neutral, singlet bis-1,4-([3]cumulene)-p-carboquinoid as a result of the π-accepting properties of the capping NHCs. peerReviewed
Electronic Structures and Molecular Properties of Chalcogen Nitrides Se2N2 and SeSN2
The electronic structures and molecular properties of S2N2 as well as the currently unknown chalcogen nitrides Se2N2 and SeSN2 have been studied using various ab initio and density functional methods. All molecules share a qualitatively similar electronic structure and can be primarily described as 2π-electron aromatics having minor singlet diradical character of 6−8% that can be attributed solely to the nitrogen atoms. This diradical character is manifested in the prediction of their molecular properties, in which coupled cluster and multiconfigurational approaches, as well as density functional methods, show the best performance. The conventional ab initio methods RHF and MP2 completely f…
Polymorphism in a π stacked Blatter radical: structures and magnetic properties of 3-(phenyl)-1-(pyrid-2-yl)-1,4-dihydrobenzo[ e ][1,2,4]triazin-4-yl
International audience; 3-(Phenyl)-1-(pyrid-2-yl)-1,4-dihydrobenzo[e][1,2,4]triazin-4-yl (2) demonstrates the first example of polymorphism in the family of Blatter radicals. Two polymorphs, 2α and 2β, have been identified and characterized by single crystal X-ray diffractometry and magnetic susceptibility measurements to investigate their magnetism–structure correlations. Both polymorphs form one-dimensional (1D) π stacks of evenly spaced radicals with distinctly different π–π overlap modes. Within the 1D π stacks, radicals are located at evenly interplanar distances, 3.461 Å for 2α and 3.430 Å for 2β. Magnetic susceptibility studies indicate that both polymorphs exhibit antiferromagnetic …
Computational investigations of 18-electron triatomic sulfur–nitrogen anions
MRCI-SD/def2-QZVP and PBE0/def2-QZVP calculations have been employed for the analysis of geometries, stabilities, and bonding of isomers of the 18-electron anions N2S2−, NS2−, and NSO−. Isomers of the isoelectronic neutral molecules SO2, S2O, S3, and O3 are included for comparison. The sulfur-centered acyclic NSN2−, NSS−, and NSO− anions are the most stable isomers of their respective molecular compositions. However, the nitrogen-centered isomers SNS− and SNO− lie close enough in energy to their more stable counterparts to allow their occurrence. The experimental structural information, where available, is in good agreement with the optimized bond parameters. The bonding in all investigate…
The influence of electron delocalization upon the stability and structure of potential N-heterocyclic carbene precursors with 1,3-diaryl-imidazolidine-4,5-dione skeletons
Targeting N-heterocyclic carbenes (NHCs) with increased π-acceptor character featuring N-fluorophenyl substituents, the molecular 2-chloro-1,3-bis(fluorophenyl)imidazolidine-4,5-diones (1a–c) were isolated from the condensation of the corresponding formamidine with oxalyl chloride. These formal adducts of NHCs with hydrogen chloride demonstrated reactivity akin to that of alkyl halides: 1,3,1′,3′-tetrakis(2,6-dimethylphenyl)-[2,2′]diimidazolidinyl-4,5,4′,5′-tetraone (2b) was formed via the reductive coupling of 1b, while 1,3-bis(2,6-diisopropylphenyl)-4,5-dioxoimidazolidin-2-yl acetate (3c) was formed as the result of a metathesis reaction with mercury(II) acetate. Chloride abstraction resu…
Effect of a Rigid Sulfonamide Bond on Molecular Folding: A Case Study
A disulfonamide compound with bulky aromatic side chains was prepared, and its properties as a potential building block for foldamers were evaluated. Two different solvate crystal forms of the compound were identified and compared to the structures of an analogous oligoamide and related disulfonamides. The disulfonamide is unfolded in one of the solvates, whereas in the other one, a loosely folded conformer stabilized by an intramolecular hydrogen bond is found. Density functional calculations indicated that the loosely folded conformer is slightly more stable than its unfolded isomer. The calculations also identified a third, more tightly folded and more extensively hydrogen bonded, confor…
Phosphorus-Chalcogen Ring Expansion and Metal Coordination
The reactivity of 4-membered (RPCh)2 rings (Ch = S, Se) that contain phosphorus in the +3 oxidation state is reported. These compounds undergo ring expansion to (RPCh)3 with the addition of a Lewis base. The 6-membered rings were found to be more stable than the 4-membered precursors, and the mechanism of their formation was investigated experimentally and by density functional theory calculations. The computational work identified two plausible mechanisms involving a phosphinidene chalcogenide intermediate, either as a free species or stabilized by a suitable base. Both the 4- and 6-membered rings were found to react with coinage metals, giving the same products: (RPCh)3 rings bound to the…
Theoretical investigation of paramagnetic group 13 diazabutadiene radicals: insights into the prediction and interpretation of EPR spectroscopy parameters.
The electronic structures and the spin density distributions of the group 13 1,4-diaza(1,3)butadiene (DAB) radicals [(R-DAB)2M]˙, [(R-DAB)MX2]˙ and {[(R-DAB)MX]2}˙˙ (M = Al, Ga, In; X = F, Cl, Br, I; R = H, Me, tBu, Ph) are studied using density functional theory at both non-relativistic and relativistic levels of theory. The calculations demonstrate that all systems share a qualitatively similar electronic structure and are primarily ligand centred π-radicals. The calculated metal, nitrogen and hydrogen hyperfine couplings are found to be independent of the identity of the R-group and the halogen atom. They are, however, dependent on the geometry and oxidation state of the metal centre. Bo…
Effects of Remote Ligand Substituents on the Structures, Spectroscopic, and Magnetic Properties of Two-Coordinate Transition-Metal Thiolate Complexes
The first-row transition-metal(II) dithiolates M(SAriPr4)2 [AriPr4 = C6H3-2,6-(C6H3-2,6-iPr2)2; M = Cr (1), Mn (3), Fe (4), Co (5), Ni (6), and Zn (7)] and Cr(SArMe6)2 [2; ArMe6 = C6H3-2,6-(C6H2-2,4,6-Me3)2] and the ligand-transfer reagent (NaSAriPr4)2 (8) are described. In contrast to their M(SAriPr6)2 (M = Cr, Mn, Fe, Co, Ni, and Zn; AriPr6 = C6H3-2,6-(C6H2-2,4,6-iPr3)2) congeners, which differ from 1 and 3-6 in having p-isopropyl groups on the flanking aryl rings of the terphenyl substituents, compounds 1 and 4-6 display highly bent coordination geometries with S-M-S angles of 109.802(2)° (1), 120.2828(3)° (4), 91.730(3)° (5), and 92.68(2)° (6) as well as relatively close metal-flanking …
Experimental and Theoretical Investigations of Structural Trends for Selenium(IV) Imides and Oxides: X-ray Structure of Se3(NAd) 2
The thermal decomposition of Se(NAd)(2) (Ad = 1-adamantyl) in THF was monitored by (77)Se NMR and shown to give the novel cyclic selenium imide Se(3)(NAd)(2) as one of the products. An X-ray structural determination showed that Se(3)(NAd)(2) is a puckered five-membered ring with d(Se-Se) = 2.404(1) A and |d(Se-N)| = 1.873(4) A. On the basis of (77)Se NMR data, other decomposition products include the six-membered ring Se(3)(NAd)(3), and the four-membered rings AdNSe(micro-NAd)(2)SeO and OSe(micro-NAd)(2)SeO. The energies for the cyclodimerization of E(NR)(2) and RNEO (E = S, Se; R = H, Me, (t)Bu, SiMe(3)), and the cycloaddition reactions of RNSeO with E(NR)(2), RNSO(2) with Se(NR)(2), and S…
Structural and Spectroscopic Studies of the PCP-Bridged Heavy Chalcogen-Centered Monoanions [HC(PPh2E)(PPh2)]− (E = Se, Te) and [HC(PR2E)2]− (E = Se, Te, R = Ph; E = Se, R = iPr): Homoleptic Group 12 Complexes and One-Electron Oxidation of [HC(PR2Se)2]−
Selenium- and tellurium-containing bis(diphenylphosphinoyl)methane monoanions were prepared by oxidation of the anion [HC(PPh2)2]− with elemental chalcogens. The selenium-containing isopropyl derivative was synthesized by generating [H2C(PiPr2)2] via a reaction between [H2C(PCl2)2] and 4 equiv of iPrMgCl prior to in situ oxidation with selenium followed by deprotonation with LiNiPr2. The solid-state structures of the lithium salts of the monochalcogeno anions TMEDA·Li[HC(PPh2E)(PPh2)] (E = Se (Li7a), E = Te (Li7b)) and the dichalcogeno anions TMEDA·Li[HC(PR2Se)2] (R = Ph (Li8a), iPr (Li8c)) revealed five- and six-membered LiEPCP and LiSePCPSe rings, respectively. The homoleptic group 12 com…
High-Level Ab Initio Predictions of Thermochemical Properties of Organosilicon Species: Critical Evaluation of Experimental Data and a Reliable Benchmark Database for Extending Group Additivity Approaches
A high-level composite quantum chemical method, W1X-1, is used herein to calculate the gas-phase standard enthalpy of formation, entropy, and heat capacity of 159 organosilicon compounds. The results set a new benchmark in the field that allows, for the first time, an in-depth assessment of existing experimental data on standard enthalpies of formation, enabling the identification of important trends and possible outliers. The calculated thermochemical data are used to determine Benson group additivity contributions for 60 Benson groups and group pairs involving silicon. These values allow fast and accurate estimation of thermochemical parameters of organosilicon compounds of varying comple…
A sigma-donor with a planar six-pi-electron B2N2C2 framework: anionic N-heterocyclic carbene or heterocyclic terphenyl anion?
Conformations and Energetics of Sulfur and Selenium Diimides
The geometries and energetics of different conformations of sulfur and selenium diimides E(NR) 2 (E = S, Se; R = H, Me, 'Bu, C 6 H 3 Me 2 -2,6, SiMe 3 ) have been studied by using various ab initio and DFT molecular orbital techniques. The syn,syn conformation is found to be most stable for parent E(NH) 2 , but in general, the preferred molecular conformation for substituted chalcogen diimides is syn,anti. In the case of E(NH) 2 the present calculations further confirm that syn,syn and syn,anti conformations lie energetically close to each other. From the three different theoretical methods used, B3PW91/6.31G * proved to be the most suitable method for predicting the geometries of chalcogen…
Isolation of a stable, acyclic, two-coordinate silylene.
The synthesis and characterization of a stable, acyclic two-coordinate silylene, Si(SAr(Me(6)))(2) [Ar(Me(6)) = C(6)H(3)-2,6(C(6)H(2)-2,4,6-Me(3))(2)], by reduction of Br(2)Si(SAr(Me(6)))(2) with a magnesium(I) reductant is described. It features a V-shaped silicon coordination with a S-Si-S angle of 90.52(2)° and an average Si-S distance of 2.158(3) A. Although it reacts readily with an alkyl halide, it does not react with hydrogen under ambient conditions, probably as a result of the ca. 4.3 eV energy difference between the frontier silicon lone pair and 3p orbitals.
Dispersion Forces and Counterintuitive Steric Effects in Main Group Molecules: Heavier Group 14 (Si-Pb) Dichalcogenolate Carbene Analogues with Sub-90° Interligand Bond Angles
The synthesis and spectroscopic and structural characterization of an extensive series of acyclic, monomeric tetrylene dichalcogenolates of formula M(ChAr)2 (M = Si, Ge, Sn, Pb; Ch = O, S, or Se; Ar = bulky m-terphenyl ligand, including two new acyclic silylenes) are described. They were found to possess several unusual features-the most notable of which is their strong tendency to display acute interligand, Ch-M-Ch, bond angles that are often well below 90°. Furthermore, and contrary to normal steric expectations, the interligand angles were found to become narrower as the size of the ligand was increased. Experimental and structural data in conjunction with high-level DFT calculations, in…
Isolation of Free Phenylide-like Carbanions with N-Heterocyclic Carbene Frameworks
A series of 1,3-bis(2,6-diisopropylphenyl)-5-methyl-1,3-diaza-4,6-diborabenzenes with methyl, phenyl, and dimethylamino substituents on the ring boron atoms were prepared using the cyclocondensation reaction between N,N'-bis(2,6-diisopropylphenyl)trimethylsilylformamidine and the appropriately substituted 1,1-bis(organochloroboryl)ethane, followed by deprotonation of the cationic ring intermediate. The planar, heterocyclic benzene analogues could be further deprotonated at the other ring carbon using an additional equivalent of potassium hexamethyldisilazide to yield organometallic derivatives akin to the potassium phenylide. The potassium cations could be efficiently sequestered in both so…
Direct observation of a borane-silane complex involved in frustrated Lewis-pair-mediated hydrosilylations.
Perfluorarylborane Lewis acids catalyse the addition of silicon-hydrogen bonds across C=C, C=N and C=O double bonds. This 'metal-free' hydrosilylation has been proposed to occur via borane activation of the silane Si-H bond, rather than through classical Lewis acid/base adducts with the substrate. However, the key borane/silane adduct had not been observed experimentally. Here it is shown that the strongly Lewis acidic, antiaromatic 1,2,3-tris(pentafluorophenyl)-4,5,6,7-tetrafluoro-1-boraindene forms an observable, isolable adduct with triethylsilane. The equilibrium for adduct formation was studied quantitatively through variable-temperature NMR spectroscopic investigations. The interactio…
More electron rich than cyclopentadienyl: 1,2-diaza-3,5-diborolyl as a ligand in ferrocene and ruthenocene analogs
Ruthenium and iron sandwich complexes incorporating cyclopentadienyl analogs with CB(2)N(2)(-) skeletons were characterized. Electrochemical measurements supported by computational studies revealed that in combination with larger metal ions such as Ru the CB(2)N(2)(-) ligand can be more electron-rich than its organic counterpart.
Haptotropism in a Nickel Complex with a Neutral, π‐Bridging cyclo ‐P 4 Ligand Analogous to Cyclobutadiene
Synthesis, Spectroscopic, and Structural Investigation of the Cyclic [N(PR2E)2]+ Cations (E = Se, Te; R = iPr, Ph): the Effect of Anion and R-Group Exchange
Two-electron oxidation of the [N(PiPr2E)2]- anion with iodine produces the cyclic [N(PiPr2E)2]+ (E =Se, Te) cations, which exhibit long E-E bonds in the iodide salts [N(PiPr2Se)2]I (4) and [N(PiPr2Te)2]I (5). The iodide salts 4 and 5 are converted to the ion-separated salts [N(PiPr2Se)2]SbF6 (6) and [N(PiPr2Te)2]SbF6 (7) upon treatment with AgSbF6. Compounds 4-7 were characterized in solution by multinuclear NMR, vibrational, and UV-visible spectroscopy supported by DFT calculations. A structural comparison of salts 4-7 and [N(PiPr2Te)2]Cl (8) confirms that the long E-E bonds in 4, 5, and 8 can be attributed primarily to the donation of electron density from a lone pair of the halide counte…
Electrochemical and Electronic Structure Investigations of the [S3N3]• Radical and Kinetic Modeling of the [S4N4]n/[S3N3]n (n = 0, −1) Interconversion
Voltammetric studies of S4N4 employing both cyclic (CV) and rotating disk (RDE) methods in CH2Cl2 at a glassy carbon electrode reveal a one-electron reduction at −1.00 V (versus ferrocene/ferrocenium), which produces a second redox couple at −0.33 V, confirmed to be the electrochemically generated [S3N3]− by CV studies on its salts. Diffusion coefficients (CH2Cl2/0.4 M [nBu4N][PF6]) estimated by RDE methods: S4N4, 1.17 × 10−5 cm2 s−1; [S3N3]−, 4.00 × 10−6 cm2 s−1. Digital simulations of the CVs detected slow rates of electron transfer for both couples and allowed for a determination of rate constants for homogeneous chemical reaction steps subsequent to electron transfer. The common paramet…
Syntheses, X-ray structures, and redox behaviour of the group 14 bis-boraamidinates M[PhB(μ-N-t-Bu)2]2 (M = Ge, Sn) and Li2M[PhB(μ-N-t-Bu)2]2 (M = Sn, Pb)
The solid-state structures of the complexes M[PhB(μ-N-t-Bu)2]2 (1a, M= Ge; 1b, M = Sn) were determined to be spirocyclic with two orthogonal boraamidinate (bam) ligands N,N′-chelated to the group 14 centre. Oxidation of 1b with SO2Cl2 afforded the thermally unstable, blue radical cation {Sn[PhB(μ-N-t-Bu)2]2}•+, identified by electron paramagnetic resonance (EPR) spectroscopy supported by density functional theory (DFT) calculations, whereas the germanium analogue 1a was inert towards SO2Cl2. The reaction between Li2[PhB(μ-N-t-Bu)2]2 and SnCl2 or PbI2 in 2:1 molar ratio in diethyl ether produced the novel heterotrimetallic complexes Li2Sn[PhB(μ-N-t-Bu)2]2 (2b) and (Et2O·Li)LiPb[PhB(μ-N-t-Bu…
NMR Spectroscopic Evidence for the Intermediacy of XeF3− in XeF2/F− Exchange, Attempted Syntheses and Thermochemistry of XeF3− Salts, and Theoretical Studies of the XeF3− Anion
The existence of the trifluoroxenate(II) anion, XeF(3)(-), had been postulated in a prior NMR study of the exchange between fluoride ion and XeF(2) in CH(3)CN solution. The enthalpy of activation for this exchange, ΔH(⧧), has now been determined by use of single selective inversion (19)F NMR spectroscopy to be 74.1 ± 5.0 kJ mol(-1) (0.18 M) and 56.9 ± 6.7 kJ mol(-1) (0.36 M) for equimolar amounts of [N(CH(3))(4)][F] and XeF(2) in CH(3)CN solvent. Although the XeF(3)(-) anion has been observed in the gas phase, attempts to prepare the Cs(+) and N(CH(3))(4)(+) salts of XeF(3)(-) have been unsuccessful, and are attributed to the low fluoride ion affinity of XeF(2) and fluoride ion solvation in…
Haptotropism in a Nickel Complex with a Neutral, π‐Bridging cyclo‐P4 Ligand Analogous to Cyclobutadiene
The reaction of ( 1 )Ni(η 2 -cod), 2 , incorporating a chelating bis( N -heterocyclic carbene) 1 , with P 4 in pentane yielded the dinuclear complex [( 2 )Ni] 2 (μ 2 ,η 2 :η 2 -P 4 ), 3 , formally featuring a cyclobutadiene-like, neutral, rectangular, π-bridging P 4 -ring. In toluene, the butterfly-shaped complex [( 1 )Ni] 2 (μ 2 ,η 2 :η 2 -P 2 ), 4 , with a formally neutral P 2 -unit was obtained from 2 and either P 4 or 3 . Computational studies showed that a low energy barrier haptotropic rearrangement involving two isomers of the μ 2 ,η 2 :η 2 -P 4 coordination mode and a low energy μ 2 ,η 4 :η 4 -P 4 coordination mode, as previously predicted for related nickel cyclobutadiene complexes…
ChemInform Abstract: Weak Interactions Between Trivalent Pnictogen Centers: Computational Analysis of Bonding in Dimers X3E···EX3(E: Pnictogen, X: Halogen).
The nature of weak interactions in dimers X3E···EX3 (E = N−Bi, X = F−I) was investigated by wave function and density functional theory (DFT)-based methods. Out of the 20 systems studied, 10 are found to be bound at the CP-MP2 and LMP2 levels of theory. Detailed partition of the interaction energy into different components revealed that dispersion is the primary force holding the dimers together but there also exists an important ionic component whose contribution increases with increasing halogen size. As expected, standard density functionals fail to describe bonding in the studied systems. However, the performance of DFT methods can be easily improved via empirical dispersion correction …
Mechanistic Study of Stepwise Methylisocyanide Coupling and C-H Activation Mediated by a Low-Valent Main Group Molecule
An experimental and DFT investigation of the mechanism of the coupling of methylisocyanide and C-H activation mediated by the germylene (germanediyl) Ge(Ar(Me6))2 (Ar(Me6) = C6H3-2,6(C6H2-2,4,6-Me3)2) showed that it proceeded by initial MeNC adduct formation followed by an isomerization involving the migratory insertion of the MeNC carbon into the Ge-C ligand bond. Addition of excess MeNC led to sequential insertions of two further MeNC molecules into the Ge-C bond. The insertion of the third MeNC leads to methylisocyanide methyl group C-H activation to afford an azagermacyclopentadienyl species. The X-ray crystal structures of the 1:1 (Ar(Me6))2GeCNMe adduct, the first and final insertion …
Synthesis of a labile sulfur-centred ligand, [S(H)C(PPh2S)2]−: structural diversity in lithium(i), zinc(ii) and nickel(ii) complexes
A high-yield synthesis of [Li{S(H)C(PPh2S)2}]2 [Li2·(3)2] was developed and this reagent was used in metathesis with ZnCl2 and NiCl2 to produce homoleptic complexes 4 and 5b in 85 and 93% yields, respectively. The solid-state structure of the octahedral complex [Zn{S(H)C(PPh2S)2}2] (4) reveals notable inequivalence between the Zn-S(C) and Zn-S(P) contacts (2.274(1) Å vs. 2.842(1) and 2.884(1) Å, respectively). Two structural isomers of the homoleptic complex [Ni{S(H)C(PPh2S)2}2] were isolated after prolonged crystallization processes. The octahedral green Ni(ii) isomer 5a exhibits the two monoprotonated ligands bonded in a tridentate (S,S',S'') mode to the Ni(ii) centre with three distinctl…
A Simple Complex on the Verge of Breakdown: Isolation of the Elusive Cyanoformate Ion
Cyanide Hitches a Ride Cyanide is a by-product of the biosynthesis of ethylene in plants and it has been somewhat puzzling how the ion is safely removed before it can shut down enzymatic pathways by coordination to catalytic iron centers. A proposed mechanism has implicated the cyanoformate ion—essentially, a weak adduct of cyanide and carbon dioxide—as the initial product, although its lifetime was uncertain. Murphy et al. (p. 75 ; see the Perspective by Alabugin and Mohamed ) crystallized this previously elusive adduct and found that its solution-phase stability varies inversely with the dielectric properties of the medium. The results bolster a picture in which the adduct shuttles the cy…
The cyclic [N(PiPr2E)2]+ (E = Se, Te) cations: a new class of inorganic ring system.
The two-electron oxidation of [(tmeda)NaN(PiPr2E)2] with iodine produces the cyclic [N(PiPr2E)2]+ (E = Se, Te) cations, which exhibit long E–E bonds in the iodide salts. peerReviewed
Low‐Valent Germanylidene Anions: Efficient Single‐Site Nucleophiles for Activation of Small Molecules
Abstract Rare mononuclear and helical chain low‐valent germanylidene anions supported by cyclic (alkyl)(amino)carbene and hypermetallyl ligands were synthesised by stepwise reduction from corresponding germylene precursors via stable and isolable germanium radicals. The electronic structures of the anions can be described with ylidene and ylidone resonance forms with the Ge−C π‐electrons capable of binding even weak electrophiles. The germanylidene anions reacted with CO2 to give μ‐CO2‐κC:κO complexes, a rare coordination mode for low‐valent germanium and inaccessible for the related neutral germylones. These results implicate low‐valent germanylidene anions as efficient single‐site nucleop…
Pyrazolium- and 1,2-Cyclopentadiene-Based Ligands as σ-Donors: a Theoretical Study of Electronic Structure and Bonding
A high-level theoretical investigation of 1,2-cyclopentadiene (4) was performed using density functional theory and wave function methods. The results reveal that, in contrast to earlier assumptions, the ground state of this ephemeral “allene” is carbene-like with a small diradical component. Furthermore, the electronic structure and chemistry of 4 are found to parallel that of 1,2,4,6-cycloheptatetraene: both molecules possess a low-lying excited singlet state with a closed-shell carbenic structure, enabling rich coordination chemistry. Energy decomposition analyses conducted for currently unknown metal complexes of 4 as well as those involving stable carbenes based on the pyrazolium frame…
Experimental and theoretical investigations of the redox behavior of the heterodichalcogenido ligands [(EP(i)Pr2)(TeP(i)Pr2)N](-) (E = S, Se): cyclic cations and acyclic dichalcogenide dimers.
The two-electron oxidation of the lithium salts of the heterodichalcogenidoimidodiphosphinate anions [(EP (i)Pr 2)(TeP (i)Pr 2)N] (-) ( 1a, E = S; 1b, E = Se) with iodine yields cyclic cations [(EP (i)Pr 2)(TeP (i)Pr 2)N] (+) as their iodide salts [(SP (i)Pr 2)(TeP (i)Pr 2)N]I ( 2a) and [(SeP (i)Pr 2)(TeP (i)Pr 2)N]I ( 2b). The five-membered rings in 2a and 2b both display an elongated E-Te bond as a consequence of an interaction between tellurium and the iodide anion. One-electron reduction of 2a and 2b with cobaltocene produces the neutral dimers (EP (i)Pr 2NP (i)Pr 2Te-) 2 ( 3a, E = S; 3b, E = Se), which are connected exclusively through a Te-Te bond. Two-electron reduction of 2a and 2b …
Insights into the decomposition pathway of a lutetium alkylamido complex via intramolecular C–H bond activation
Abstract Synthesis, characterization and reaction chemistry of lutetium alkylamido LLu(CH2SiMe3)(NHCPh3) (2), L = 2,5-[Ph2P=N(4-iPrC6H4)]2N(C4H2)–, is reported. Complex 2 undergoes cyclometalation of the NHCPh3 ligand at elevated temperatures to produce the orthometalated complex LLu(κ2−N,C-(NHCPh2(C6H4))) (3) which converts to 0.5 equivalents of bis(amido) LLu(NHCPh3)2 (4) upon heating at 80 °C for 24 h. Reaction of complex 2 with 4-dimethylaminopyridine (DMAP) does not promote alkane elimination nor imido formation. A kinetic analysis of the thermal decomposition of complex 2, supported by deuterium labelling studies and computational analysis (PBE0/def2-TZVP/SDD(Lu)), indicate direct Csp…
Structures and EPR spectra of binary sulfur–nitrogen radicals from DFT calculations
Abstract The scattered electron paramagnetic resonance (EPR) spectroscopic data for binary sulfur–nitrogen (S,N) radicals have been compiled and critically assessed.Many of these are inorganic rings or cages.For each species, possible equilibrium structures in the gas phase and the EPR hyperfine coupling (hfc) constants have been calculated with DFT using the B3LYP functional and basis sets of triple-ζ (or better) quality.Good agreement is obtained between calculated and measured values for the well characterized [S3N2]+ , a planar π-radical for which the s-component of the orbitals is likely to be reasonably independent of minor geometrical changes between gas-phase and condensed-phase sta…
Homoleptic Pnictogen-Chalcogen Coordination Complexes
The synthesis and structural characterization of dicationic selenium and tellurium analogues of the carbodiphosphorane and triphosphenium families of compounds are reported. These complexes, [Ch(dppe)][OTf](2) [Ch = Se, Te; dppe = 1,2-bis(diphenylphosphino)ethane; OTf = trifluoromethanesulfonate], are formed using [Ch](2+) reagents via a ligand-exchange protocol and represent extremely rare examples of homoleptic pnictogen → chalcogen coordination complexes. The corresponding arsenic compounds were also prepared, [Ch(dpAse)][OTf](2) [Ch = Se, Te; dpAse = 1,2-bis(diphenylarsino)ethane], exhibiting the first instance of an arsenic → chalcogen dative bond. The electronic structures of these un…
Tetracyclic silaheterocycle formed through a pericyclic reaction cascade including a two-fold intramolecular C–C bond activation
Reductive debromination of the tribromoamidosilane 2 gave the tetracyclic silaheterocycle 3 through a unique reaction cascade involving unprecedented two-fold intramolecular cycloaddition by transient silylenes. Experimental and computational analyses of the reaction mechanism allowed the identification of the key intermediates that lead to the silaheterocycle 3 or, alternatively, to the cyclotrisilene 19. peerReviewed
Bis[cyclic (alkyl)(amino)carbene] isomers: Stable trans -bis(CAAC) versus facile olefin formation for cis -bis(CAAC)
A trans-bis(CAAC) was isolated and shown to be a ditopic ligand for rhodium and iridium. The cis-isomer is unstable towards intramolecular CC-bond formation, however, its formal insertion products into the bonds of H2O and NH3 were identified.
Synthesis and Redox Behaviour of the Chalcogenocarbonyl Dianions, [(E)C(PPh2S)2]2−: Formation and Structures of Chalcogen−Chalcogen Bonded Dimers and a Novel Selone
The lithium salts of the chalcogenocarbonyl dianions [(E)C(PPh(2)S)(2)](2-) (E=S (4 b), Se (4 c)) were produced through the reactions between Li(2)[C(PPh(2)S)(2)] and elemental chalcogens in the presence of tetramethylethylenediamine (TMEDA). The solid-state structure of {[Li(TMEDA)](2)[(Se)C(PPh(2)S)(2)]}-[{Li(TMEDA)}(2)4 c]-was shown to be bicyclic with the Li(+) cations bis-S,Se-chelated by the dianionic ligand. One-electron oxidation of the dianions 4 b and 4 c with iodine afforded the diamagnetic complexes {[Li(TMEDA)](2)[(SPh(2)P)(2)CEEC(PPh(2)S)(2)]} ([Li(TMEDA)](2)7 b (E=S), [Li(TMEDA)](2)7 c (E=Se)), which are formally dimers of the radical anions [(E)C(PPh(2)S)(2)](-) (.) (E=S (5 …
Intermolecular oxidative dehydrogenative 3,3′-coupling of benzo[b]furans and benzo[b]thiophenes promoted by DDQ/H+: total synthesis of shandougenine B
With an excess of a strong acid, 2,3-dichloro-5,6-dicyano-1,4-quinone (DDQ) is shown to promote metal-free intermolecular oxidative dehydrogenative (ODH) 3,3'-coupling of 2-aryl-benzo[b]furans and 2-aryl-benzo[b]thiophenes up to 92% yield as demonstrated with 9 substrates. Based on the analysis of oxidation potentials and molecular orbitals combined with EPR, NMR and UV-Vis observations, the studied reaction is initiated by a DDQ-substrate charge transfer complex and presumably proceeds via oxidation of the substrate into an electrophilic radical cation that further reacts with another molecule of a neutral substrate. The coupling reactivity can easily be predicted from the oxidation potent…
Paramagnetic aluminium β-diketiminate
The β-diketiminate ligand framework is shown to undergo reduction to form a neutral main group radical stabilized by spiroconjugation of the unpaired electron over the group 13 element centre. The synthesized paramagnetic complex was characterized by EPR spectroscopy and computational chemistry.
The Nature of Transannular Interactions in E4N4 and E82+ (E = S, Se)
The electronic structures of tetrachalcogen tetranitrides, E4N4, and octachalcogen dications, E8(2+), and the nature of their intramolecular E···E interactions (E = S, Se) was studied with high-level theoretical methods. The results reveal that the singlet ground states of both systems have a surprisingly large correlation contribution which functions to weaken and therefore lengthen the cross-ring E-E bond. The observed correlation effects are primarily static in E4N4, whereas in E8(2+) the dynamic part largely governs the total correlation contribution. The presented description of bonding is the first that gives an all-inclusive picture of the origin of cross-ring interactions in E4N4 an…
Preparation and Characterization of P2 BCh Ring Systems (Ch=S, Se) and Their Reactivity with N-Heterocyclic Carbenes
Four-membered rings with a P2BCh core (Ch = S, Se) have been synthesized via reaction of phosphinidene chalcogenide (Ar*P=Ch) and phosphaborene (Mes*P=BNR2). The mechanistic pathways towards these rings are explained by detailed computational work that confirmed the preference for the formation of P–P, not P–B, bonded systems, which seems counterintuitive given that both phosphorus atoms contain bulky ligands. The reactivity of the newly synthesized heterocycles, as well as that of the known (RPCh)n rings (n = 2, 3), was probed by the addition of Nheterocyclic carbenes, which revealed that all investigated compounds can act as sources of low-coordinate phosphorus species. peerReviewed
Tridentate C–I⋯O−–N+ halogen bonds
The X-ray structures of the first co-crystals where the three oxygen lone pairs in N-oxides are fully utilized for tridentate C–I⋯O−–N+ halogen bonding with 1,ω-diiodoperfluoroalkanes are reported, studied computationally, and compared with the corresponding silver(I) N-oxide complexes.
Addition of Ethylene or Hydrogen to a Main-Group Metal Cluster under Mild Conditions
Reaction of the tin cluster Sn8(Arinline image)4 (Arinline image=C6H2-2,6-(C6H3-2,4,6-Me3)2) with excess ethylene or dihydrogen at 25 °C/1 atmosphere yielded two new clusters that incorporated ethylene or hydrogen. The reaction with ethylene yielded Sn4(Arinline image)4(C2H2)5 that contained five ethylene moieties bridging four aryl substituted tin atoms and one tin–tin bond. Reaction with H2 produced a cyclic tin species of formula (Sn(H)Arinline image)4, which could also be synthesized by the reaction of {(Arinline image)Sn(μ-Cl)}2 with DIBAL-H. These reactions represent the first instances of direct reactions of isolable main-group clusters with ethylene or hydrogen under mild conditions…
Synthesis and characterisation of p-block complexes of biquinoline at different ligand charge states
The first examples of p-block coordination complexes of biquinoline, namely [(biq)BCl2]Cl and [(biq)BCl2]˙, were synthesized and structurally characterized. The acquired data allowed the estimation of the ligand charge state based on its metrical parameters. The subsequent use of this protocol, augmented with theoretical calculations, revealed ambiguities in the published data for transition metal complexes of biquinoline. peerReviewed
Synthesis of new hybrid 1,4-thiazinyl-1,2,3-dithiazolyl radicals via Smiles rearrangement
The condensation reaction of 2-aminobenzenethiols and 3-aminopyrazinethiols with 2-amino-6-fluoro-N-methylpyridinium triflate afforded thioether derivatives that were found to undergo Smiles rearrangement and cyclocondensation with sulphur monochloride to yield new hybrid 1,4-thiazine-1,2,3-dithiazolylium cations. The synthesized cations were readily reduced to the corresponding stable neutral radicals with spin densities delocalized over both 1,4-thiazinyl and 1,2,3-dithiazolyl moieties. peerReviewed
The Instability of Ni{N(SiMe3 )2 }2 : A Fifty Year Old Transition Metal Silylamide Mystery.
The characterization of the unstable Ni(II) bis(silylamide) Ni{N(SiMe3 )2 }2 (1), its THF complex Ni{N(SiMe3 )2 }2 (THF) (2), and the stable bis(pyridine) derivative trans-Ni{N(SiMe3 )2 }2 (py)2 (3), is described. Both 1 and 2 decompose at ca. 25 °C to a tetrameric Ni(I) species, [Ni{N(SiMe3 )2 }]4 (4), also obtainable from LiN(SiMe3 )2 and NiCl2 (DME). Experimental and computational data indicate that the instability of 1 is likely due to ease of reduction of Ni(II) to Ni(I) and the stabilization of 4 through dispersion forces.
Benson group additivity values of phosphines and phosphine oxides: Fast and accurate computational thermochemistry of organophosphorus species
Composite quantum chemical methods W1X-1 and CBS-QB3 are used to calculate the gas phase standard enthalpy of formation, entropy, and heat capacity of 38 phosphines and phosphine oxides for which reliable experimental thermochemical information is limited or simply nonexistent. For alkyl phosphines and phosphine oxides, the W1X-1, and CBS-QB3 results are mutually consistent and in excellent agreement with available G3X values and empirical data. In the case of aryl-substituted species, different computational methods show more variation, with G3X enthalpies being furthest from experimental values. The calculated thermochemical data are subsequently used to determine Benson group additivity …
Zirconocene-Based Methods for the Preparation of BN-Indenes : Application to the Synthesis of 1,5-Dibora-4a,8a-diaza-1,2,3,5,6,7-hexaaryl-4,8-dimethyl-s-indacenes
A method for the preparation of 3-bora-9aza-indene heterocycles based on zirconocene mediated functionalization of the ortho-CH bonds of pyridines has been developed and used to make two such compounds. Unlike other methods, the boron center in these heterocycles remains functionalized with a chloride ligand and so the compounds can be further elaborated through halide abstraction and reduction. The utility of the method was further demonstrated by applying it towards the preparation of 1,5- dibora-4a,8a-diaza BN analogues of the intriguing hydrocarbon s-indacene starting from 2,5-dimethylpyrazine. Gram quantities of one such compound was prepared and fully characterized, and both experimen…
Room-Temperature Magnetic Bistability in a Salt of Organic Radical Ions
International audience; Cocrystallization of 7,7′,8,8′-tetracyanoquinodimethane radical anion (TCNQ −•) and 3-methylpyridinium-1,2,3,5dithiadiazolyl radical cation (3-MepyDTDA +•) afforded isostructural acetonitrile (MeCN) or propionitrile (EtCN) solvates containing cofacial π dimers of homologous components. Loss of lattice solvent from the diamagnetic solvates above 366 K affords a high-temperature paramagnetic phase containing discrete TCNQ −• and weakly bound π dimers of 3-MepyDTDA +• , as evidenced by X-ray diffraction methods and magnetic susceptibility measurements. Below 268 K, a first-order phase transition occurs, leading to a low-temperature diamagnetic phase with TCNQ −• σ dimer…
Ammonia Activation by a Nickel NCN-Pincer Complex featuring a Non-Innocent N-Heterocyclic Carbene: Ammine and Amido Complexes in Equilibrium
A Ni0-NCN pincer complex featuring a six-membered N-heterocyclic carbene (NHC) central platform and amidine pendant arms was synthesized by deprotonation of its NiII precursor. It retained chloride in the square-planar coordination sphere of nickel and was expected to be highly susceptible to oxidative addition reactions. The Ni0 complex rapidly activated ammonia at room temperature, in a ligand-assisted process where the carbene carbon atom played the unprecedented role of proton acceptor. For the first time, the coordinated (ammine) and activated (amido) species were observed together in solution, in a solvent-dependent equilibrium. A structural analysis of the Ni complexes provided insig…
Role of Alkyl Substituent and Solvent on the Structural, Thermal, and Magnetic Properties of Binary Radical Salts of 1,2,3,5-Dithia- or Diselenadiazolyl Cations and the TCNQ Anion
The synthesis, structural, thermal, and magnetic properties of a series of simple binary organic salts based on the radical anion of 7,7,8,8-tetracyanoquinodimethane (TCNQ) and 4-(N-alkylpyridinium-3-yl)-1,2,3,5-dithiadiazolyl (DTDA), 1R (R = Et, Pr, Bu), radical cations and their heavier selenium analogues (DSDA), 2R, are described. Single-crystal X-ray structural analyses reveal that short alkyl substituents on the pyridinium moiety of DTDA/DSDA cations lead to crystallization of isostructural acetonitrile (MeCN) solvates 1Et·MeCN, 1Pr·MeCN, 2Et·MeCN, and 2Pr·MeCN with trans-cofacial DTDA radical cation and eclipsed-cofacial TCNQ radical anion dimers. A slight increase in the substituent …
Halogen and Hydrogen Bonded Complexes of 5-Iodouracil
Three derivatives of 5-iodouracil were prepared, and their complexation properties, supplemented by 5-iodouracil under the same conditions, were studied with and without halogen bond acceptors in N,N-dimethylformamide, N,N-diethylformamide, N-methylformamide, formamide, dimethylsulfoxide, and water. The intermolecular halogen and hydrogen bonding interactions observed in the solid state were investigated using single crystal X-ray diffraction and quantum chemical calculations, and the acquired data were contrasted with bonding interactions previously reported for 5-iodouracil in the Cambridge Structural Database. It was found that the polarized iodine atom and the amidic NH functionality ac…
The Role of Orbital Symmetries in Enforcing Ferromagnetic Ground State in Mixed Radical Dimers
One of the first steps in designing ferromagnetic (FM) molecular materials of p-block radicals is the suppression of covalent radical-radical interactions that stabilize a diamagnetic ground state. In this contribution, we demonstrate that FM coupling between p-block radicals can be achieved by constructing mixed dimers from different radicals with differing symmetries of their singly occupied molecular orbitals. The applicability of this approach is demonstrated by studying magnetic interactions in organic radical dimers built from different derivatives of the well-known phenalenyl radical. The calculated enthalpies of dimerization for different homo- and heterodimers show that the formati…
Fabrication of Porous Hydrogenation Catalysts by a Selective Laser Sintering 3D Printing Technique
Open in a separate window Three-dimensional selective laser sintering printing was utilized to produce porous, solid objects, in which the catalytically active component, Pd/SiO2, is attached to an easily printable supporting polypropylene framework. Physical properties of the printed objects, such as porosity, were controlled by varying the printing parameters. Structural characterization of the objects was performed by helium ion microscopy, scanning electron microscopy, and X-ray tomography, and the catalytic performance of the objects was tested in the hydrogenation of styrene, cyclohexene, and phenylacetylene. The results show that the selective laser sintering process provides an alte…
A Cation-Captured Palladium(0) Anion: Synthesis, Structure, and Bonding of [PdBr(PPh3)2]− Ligated by an N-Heterocyclic Phosphenium Cation
Unsaturated N-heterocyclic phosphenium cations (uNHP) stabilize the [Pd0(PR3)2X]− anion proposed over the past decade to be the crucial but elusive intermediate in palladium-catalyzed cross-coupling reactions (X = halide). Insertion of metal into the P−Br bond of the precursor mesityl-substituted bromophosphine gives the structurally characterized Pd(0)-phosphenium complex (uNHPMes)Pd(PPh3)2Br, which features a long Pd−Br bond (2.7240(9) A) and the shortest known Pd−P bond (2.1166(17) A). The reaction is proposed to proceed by an associative pathway involving a Pd-bromophosphine complex that undergoes P-to-Pd bromide transfer.
Electronic Structures and Spectroscopic Properties of 6π-Electron Ring Molecules and Ions E2N2 and E42+ (E = S, Se, Te)
The electronic structures and molecular properties of square-planar 6π-electron ring molecules and ions E2N2 and E42+ (E = S, Se, Te) were studied using various ab initio methods and density functionals. All species were found to contain singlet diradical character in their electronic structures. Detailed analysis of the CAS wave function of S2N2 in terms of different valence bond structures gives the largest weight for a Lewis-type singlet diradical VB structure in which the two unpaired electrons reside on nitrogen atoms, though the relative importance of the different VB structures is highly dependent on the level of theory. The diradical character in both E2N2 and E42+ was found to incr…
Reversible complexation of ethylene by a silylene under ambient conditions.
Treatment of toluene solutions of the silylenes Si(SArMe6)2 (ArMe6 = C6H3-2,6(C6H2-2,4,6-Me3)2, 1) or Si(SArPri4)2 (ArPri4 = C6H3-2,6(C6H3-2,6-Pri2)2, 2) with excess ethylene gas affords the siliranes (ArMe6S)2tiebar above startSiCH2tiebar above endCH2 (3) or (ArPri4S)2tiebar above startSiCH2tiebar above endCH2 (4). Silirane 4 evolves ethylene spontaneously at room temperature in toluene solution. A Van’t Hoff analysis by variable-temperature 1H NMR spectroscopy showed that ΔGassn = −24.9(2.5) kJ mol–1 for 4. A computational study of the reaction mechanism using a model silylene Si(SPh)2 (Ph = C6H5) was in harmony with the Van’t Hoff analysis, yielding ΔGassn = −24 kJ mol–1 and an activatio…
N-Heterocyclic Carbenes with Inorganic Backbones: Electronic Structures and Ligand Properties
The electronic structures of known N-heterocyclic carbenes (NHCs) with boron, nitrogen, and phosphorus backbones are examined using quantum chemical methods and compared to the experimental results and to the computational data obtained for a classical carbon analogue, imidazol-2-ylidene. The sigma-donor and pi-acceptor abilities of the studied NHCs in selected transition-metal complexes are evaluated using a variety of approaches such as energy and charge decomposition analysis, as well as calculated acidity constants and carbonyl stretching frequencies. The study shows that the introduction of selected heteroatoms into the NHC backbone generally leads to stronger metal-carbene bonds and t…
Reactions of Alkenes and Alkynes with an Acyclic Silylene and Heavier Tetrylenes under Ambient Conditions
Cycloaddition reactions of the acyclic silylene Si(SAriPr4)2 (AriPr4 = C6H3-2,6(C6H3-2,6-iPr2)2) with a variety of alkenes and alkynes were investigated. Its reactions with the alkynes phenylacetylene and diphenylacetylene and the diene 2,3-dimethyl-1,3-butadiene yielded silacycles (AriPr4S)2tiebar above startSi(CH═tiebar above endCPh) (1), (AriPr4S)2tiebar above startSi(PhC═tiebar above endCPh) (2), and (AriPr4S)2tiebar above startSiCH2CMeCMetiebar above endCH2 (3) at ambient temperature. The compounds were characterized by X-ray crystallography, 1H, 13C, and 29Si NMR spectroscopy, and IR spectroscopy. No reaction was observed with more substituted alkenes such as propene, (Z)-2-butene, te…
Oligoamide Foldamers as Helical Chloride Receptors-the Influence of Electron-Withdrawing Substituents on Anion-Binding Interactions.
The anion-binding properties of three closely related oligoamide foldamers were studied using NMR spectroscopy, isothermal titration calorimetry and mass spectrometry, as well as DFT calculations. The 1 H NMR spectra of the foldamers in [D6 ]acetone solution revealed partial preorganization by intramolecular hydrogen bonding, which creates a suitable cavity for anion binding. The limited size of the cavity, however, enabled efficient binding by the inner amide protons only for the chloride anion resulting in the formation of a thermodynamically stable 1:1 complex. All 1:1 chloride complexes displayed a significant favourable contribution of the entropy term. Most likely, this is due to the …
Do Extremely Bent Allenes Exist?
Bent allenes: Theoretical calculations show that extremely bent allenes, cyclic or acyclic, adopt a ground state that only bears a formal relationship to classical allenes. Consequently, five-membered ring allenes favor a carbene-like electronic structure and formally contain a trivalent carbon(II) center. peerReviewed
Divergent reactivity of nucleophilic 1-bora-7a-azaindenide anions
The reactions of 1-bora-7a-azaindenide anions, prepared in moderate to excellent yields by reduction of the appropriate 1-bora-7a-azaindenyl chlorides with KC8 in THF, with alkyl halides and carbon dioxide were studied. With alkyl halides (CH2Cl2, CH3I and BrCH(D)CH(D)tBu), the anions behave as boron anions, alkylating the boron centre via a classic SN2 mechanism. This was established with DFT methods and via experiments utilizing the neo-hexyl stereoprobe BrCH(D)CH(D)tBu. These reactions were in part driven by a re-aromatization of the six membered pyridyl ring upon formation of the product. Conversely, in the reaction of the 1-bora-7a-azaindenide anions with CO2, a novel carboxylation of …
Tellurium(II)-Centered Dications from the Pseudohalide “Te(OTf)2”
Te for two: Supported by pyridine- or carbene-based ligands, tellurium-centered dications are prepared in high yield and include a dicationic tellurium analogue of the recently synthesized "carbodicarbene". The key to accessing these compounds is the isolation of a base-stabilized form of TeOTf(2) (see structure), a new highly electrophilic reagent for tellurium chemistry.
Mechanistic Studies on the Metal-Free Activation of Dihydrogen by Antiaromatic Pentarylboroles
The perfluoro- and perprotiopentaphenylboroles 1 and 2 react with dihydrogen to effect H-H bond cleavage and formation of boracyclopentene products. The mechanism of this reaction has been studied experimentally through evaluation of the kinetic properties of the slower reaction between 2 and H(2). The reaction is first-order in both [borole] and [H(2)] with activation parameters of ΔH(‡) = 34(8) kJ/mol and ΔS(‡) = -146(25) J mol(-1) K(-1). A minimal kinetic isotope effect of 1.10(5) was observed, suggesting an asynchronous geometry for H-H cleavage in the rate-limiting transition state. To explain the stereochemistry of the observed products, a ring-opening/ring-closing mechanism is propos…
"Identification of mixed bromidochloridotellurate anions in disordered crystal structures of (bdmim)2[TeX2Y4] (X, Y = Br, Cl; bdmim = 1-butyl-2,3-dimethylimidazolium) by combined application of Raman spectroscopy and solid-state DFT calculations"
Abstract The discrete mixed [TeBrxCl6−x]2− anions in their disordered crystal structures have been identified by using the phases prepared by the reaction of 1-butyl-2,3-dimethylimidazolium halogenides (bdmim)X with tellurium tetrahalogenides TeX4 (X = Cl, Br) as examples. Homoleptic (bdmim)2[TeX6] [X = Cl (1), Br (2)] and mixed (bdmim)2[TeBr2Cl4] (3), and (bdmim)2[TeBr4Cl2] (4) are formed depending on the choice of the reagents, and their crystal structures have been determined by single-crystal X-ray diffraction. The coordination environments of tellurium in all hexahalogenidotellurates are almost octahedral. Because of the crystallographic disorder, the mixed [TeBr2Cl4]2− and [TeBr4Cl2]2…
Experimental and theoretical investigations of the contact ion pairs formed by reactions of the anions [(EPR2)2N]- (R = (i)Pr, (t)Bu; E = S, Se) with the cations [(TePR2)2N]+ (R = (i)Pr, (t)Bu).
Reactions of the sodium salts [(EPR(2))(2)N]Na(TMEDA) (R = (i)Pr, (t)Bu; E = S, Se) with the iodide salts [(TePR(2))(2)N]I (R = (i)Pr, (t)Bu) in toluene produce the mixed-chalcogen systems [(EPR(2))(2)N][(TePR(2))(2)N] (6b, E = Se, R = (t)Bu; 6c, E = S, R = (t)Bu; 7b, E = Se, R = (i)Pr; 7c, E = S, R = (i)Pr). Compounds 6b, 6c, 7b, and 7c have been characterized in solution by variable-temperature multinuclear ((31)P, (77)Se, and (125)Te) NMR spectroscopy and in the solid state by single-crystal X-ray crystallography. The structures are comprised of contact ion pairs linked by bonds between Te and S or Se atoms. For the tert-butyl derivatives 6b and 6c, the anionic half of the molecule is co…
Formation, Structural Characterization, and Calculated NMR Chemical Shifts of Selenium-Nitrogen Compounds from SeCl4 and ArNHLi (Ar = supermesityl, mesityl)
Supermesityl selenium diimide [Se{N(C6H2tBu3-2, 4, 6)}2; Se{N(mes*)}2] can be prepared in a good yield from the reaction of SeCl4 and (mes*)NHLi. The molecule adopts an unprecedented anti, anti-conformation, as deduced by DFT calculations at PBE0/TZVP level of theory and supported by 77Se NMR spectroscopy and a crystal structure determination. An analogous reaction involving (C6H2Me3-2, 4, 6)NHLi [(mes)NHLi] unexpectedly lead to the reduction of selenium and afforded the selenium diamide Se{NH(mes)}2 that was characterized by X-ray crystallography and 77Se NMR spectroscopy. The Se-N bonds of 1.847(3) and 1.852(3) A show normal single bond lengths. The <NSeN bond angle of 109.9(1)° also indi…
Cleavage of Ge–Ge and Sn–Sn Triple Bonds in Heavy Group 14 Element Alkyne Analogues (EAriPr4)2 (E = Ge, Sn; AriPr4 = C6H3-2,6(C6H3-2,6-iPr2)2) by Reaction with Group 6 Carbonyls
The reactions of heavier group 14 element alkyne analogues (EAriPr4)2 (E = Ge, Sn; AriPr4 = C6H3-2,6-(C6H3-2,6-iPr2)2) with the group 6 transition-metal carbonyls M(CO)6 (M = Cr, Mo, W) under UV irradiation resulted in the cleavage of the E–E triple bond and the formation of the complexes {AriPr4EM(CO)4}2 (1–6), which were characterized by single crystal X-ray diffraction as well as by IR and multinuclear NMR spectroscopy. Single-crystal X-ray structural analyses of 1–6 showed that the complexes have a nearly planar rhomboid M2E2 core with three-coordinate group 14 atoms. The coordination geometry at the group 6 metals is distorted octahedral formed by four carbonyl groups as well as two br…
Coordination Complexes of a Neutral 1,2,4-Benzotriazinyl Radical Ligand: Synthesis, Molecular and Electronic Structures, andMagnetic Properties
A series of d-block metal complexes of the recently reported coordinating neutral radical ligand 1-phenyl-3-(pyrid-2-yl)-1,4-dihydro-1,2,4-benzotriazin-4-yl (1) was synthesized. The investigated systems contain the benzotriazinyl radical 1 coordinated to a divalent metal cation, MnII, FeII, CoII, or NiII, with 1,1,1,5,5,5-hexafluoroacetylacetonato (hfac) as the auxiliary ligand of choice. The synthesized complexes were fully characterized by single-crystal X-ray diffraction, magnetic susceptibility measurements, and electronic structure calculations. The complexes [Mn(1)(hfac)2] and [Fe(1)(hfac)2] displayed antiferromagnetic coupling between the unpaired electrons of the ligand and the meta…
Computational modeling of isotropic electron paramagnetic resonance spectra of doublet state main group radicals
The combined use of theoretical and mathematical methods in the analysis of electron paramagnetic resonance data has greatly increased the ability to interpret even the most complex spectra reported for doublet state inorganic main group radicals. This personal account summarizes the theoretical basis of such an approach and provides an in-depth discussion of some recent illustrative examples of the utilization of this methodology in practical applications. The emphasis is on displaying the enormous potential embodied within the approach. peerReviewed
Coexistence of long-range antiferromagnetic order and slow relaxation of the magnetization in the first lanthanide complex of a 1,2,4-benzotriazinyl radical
The first lanthanide complex of a 1,2,4-benzotriazinyl radical (1), Dy(1)(tbacac)3 (2, tbacac = 2,2,6,6-tetramethyl-3,5-heptane-dionato), was synthesised and found to have an antiferromagnetically ordered ground state with a metamagnetic phase diagram and a critical field of 0.91 T at 1.85 K. The application of a small dc field revealed the single-molecule magnet behaviour of 2, illustrating the coexistence of long-range antiferromagnetic order and slow relaxation of the magnetization. peerReviewed
Molecular Complexes Featuring Unsupported Dispersion-Enhanced Aluminum–Copper and Gallium–Copper Bonds
The reaction of the copper(I) β-diketiminate copper complex {(Cu(BDIMes))2(μ-C6H6)} (BDIMes = N,N′-bis(2,4,6-trimethylphenyl)pentane-2,4-diiminate) with the low-valent group 13 metal β-diketiminates M(BDIDip) (M = Al or Ga; BDIDip = N,N′-bis(2,6-diisopropylphenyl)pentane-2,4-diiminate) in toluene afforded the complexes {(BDIMes)CuAl(BDIDip)} and {(BDIMes)CuGa(BDIDip)}. These feature unsupported copper–aluminum or copper–gallium bonds with short metal–metal distances, Cu–Al = 2.3010(6) Å and Cu–Ga = 2.2916(5) Å. Density functional theory (DFT) calculations showed that approximately half of the calculated association enthalpies can be attributed to London dispersion forces. peerReviewed
Experimental and theoretical investigations of structural isomers of dichalcogenoimidodiphosphinate dimers: dichalcogenides or spirocyclic contact ion pairs?
A synthetic protocol for the tert-butyl-substituted dichalcogenoimidodiphosphinates [Na(tmeda){(EPtBu(2))(2)N}] (3 a, E=S; 3 b, E=Se; 3 c, E=Te) has been developed. The one-electron oxidation of the sodium complexes [Na(tmeda){(EPR(2))(2)N}] with iodine produces a series of neutral dimers (EPR(2)NPR(2)E--)(2) (4 b, E=Se, R=iPr; 4 c, E=Te, R=iPr; 5 a, E=S, R=tBu; 5 b, E=Se, R=tBu; 5 c, E=Te, R=tBu). Attempts to prepare 4 a (E=S, R=iPr) in a similar manner produced a mixture including HN(SPiPr(2)). Compounds 4 b, 4 c and 5 a-c were characterised by multinuclear NMR spectra and by X-ray crystallography, which revealed two alternative structures for these dimeric molecules. The derivatives 4 b,…
Nature of Bonding in Group 13 Dimetallenes: a Delicate Balance between Singlet Diradical Character and Closed Shell Interactions
The nature of metal-metal bonding in group 13 dimetallenes REER (E = Al, Ga, In, Tl; R = H, Me, (t)Bu, Ph) was investigated by use of quantum chemical methods that include HF, second order Møller-Plesset perturbation theory (MP2), coupled cluster (CCSD(T)), complete active space with (CASPT2) and without (CAS) second order perturbation theory, and two density functionals, namely, B3LYP and M06-2X. The results show that the metal-metal interaction in group 13 dimetallenes stems almost exclusively from static and dynamic electron correlation effects: both dialuminenes and digallenes have an important singlet diradical component in their wave function, whereas the bonding in the heavier diinde…
Heptacoordinated Molybdenum(VI) Complexes of Phenylenediamine Bis(phenolate): A Stable Molybdenum Amidophenoxide Radical
The syntheses, crystallographic structures, magnetic properties, and theoretical studies of two heptacoordinated molybdenum complexes with N,N′-bis(3,5-di-tert-butyl-2-hydroxyphenyl)-1,2-phenylenediamine (H4N2O2) are reported. A formally molybdenum(VI) complex [Mo(N2O2)Cl2(dmf)] (1) was synthesized by the reaction between [MoO2Cl2(dmf)2] and H4N2O2, whereas the other molybdenum(VI) complex [Mo(N2O2)(HN2O2)] (2) was formed when [MoO2(acac)2] was used as a molybdenum source. Both complexes represent a rare case of the MoVI ion without any multiply bonded terminal ligands. In addition, molecular structures, magnetic measurements, ESR spectroscopy, and density functional theory calculations ind…
Porous 3D Printed Scavenger Filters for Selective Recovery of Precious Metals from Electronic Waste
Selective laser sintering (SLS) 3D printing is used to fabricate highly macroporous ion scavenger filters for recovery of Pd and Pt from electronic waste. The scavengers are printed by using a mixture of polypropylene with 10 wt% of type‐1 anion exchange resin. Porosities and the flow‐through properties of the filters are controlled by adjusting the SLS printing parameters. The cylinder‐shaped filters are used in selective recovery of Pd and Pt from acidic leachate of electronic waste simply by passing the solution through the object. Under such conditions, the scavenger filters are able to capture Pd and Pt as anionic complexes with high efficiency from a solution containing mixture of dif…
Copper(I) Complexes of Bis(2-(diphenylphosphino)phenyl) Ether: Synthesis, Reactivity, and Theoretical Calculations
The tricoordinated cationic Cu-I complex [Cu(kappa(2)-P,P'-DPEphos)(kappa(1)-P-DPEphos)][BF4] (1) (DPEphos = bis(2-(diphenylphosphino)phenyl) ether) containing a dangling phosphorus center was synthesized from the reaction of [Cu(CH3CN)(4)][BF4] with DPEphos in a 1:2 molar ratio in dichloromethane. When complex 1 is treated with MnO2, elemental sulfur, or selenium, the uncoordinated phosphorus atom undergoes oxidation to form a PE bond resulting in the formation of complexes of the type [Cu(kappa(2)-P,P'-DPEphos)(kappa(2)-P,E-DPEphos-E)][BF4] (2, E = O; 3, E = S; 4, E = Se) containing a Cu-E bond. The zigzag polymeric Cu-I complex [Cu(kappa(2)-P,P'-DPEphos)(mu-4,4'-bpy)](n)[BF4](n) (5) was …
Side‐on Coordination in Isostructural Nitrous Oxide and Carbon Dioxide Complexes of Nickel
Abstract A nickel complex incorporating an N2O ligand with a rare η2‐N,N′‐coordination mode was isolated and characterized by X‐ray crystallography, as well as by IR and solid‐state NMR spectroscopy augmented by 15N‐labeling experiments. The isoelectronic nickel CO2 complex reported for comparison features a very similar solid‐state structure. Computational studies revealed that η2‐N2O binds to nickel slightly stronger than η2‐CO2 in this case, and comparably to or slightly stronger than η2‐CO2 to transition metals in general. Comparable transition‐state energies for the formation of isomeric η2‐N,N′‐ and η2‐N,O‐complexes, and a negligible activation barrier for the decomposition of the lat…
Bond stretching and redox behavior in coinage metal complexes of the dichalcogenide dianions [(SPh2P)2CEEC(PPh2S)2]2- (E=S, Se): diradical character of the dinuclear copper(I) complex (E=S).
The metathetical reactions of a) [Li(tmeda)](2)[(S)C(PPh(2)S)(2)] (Li(2)·3c) with CuCl(2) and b) [Li(tmeda)](2)[(SPh(2)P)(2)CSSC(PPh(2)S)(2)] (Li(2)·4c) with two equivalents of CuCl both afford the binuclear Cu(I) complex {Cu(2)[(SPh(2)P)(2)CSSC(PPh(2)S)(2)]} (5c). The elongated (C)S-S(C) bond (ca. 2.54 and 2.72 A) of the dianionic ligand observed in the solid-state structure of 5c indicate the presence of diradical character as supported by theoretical analyses. The treatment of [Li(tmeda)](2)[(SPh(2)P)(2)CSeSeC(PPh(2)S)(2)] (Li(2)·4b) and Li(2)·4c with AgOSO(2)CF(3) produce the analogous Ag(I) derivatives, {Ag(2)[(SPh(2)P)(2)CEEC(PPh(2)S)(2)]} (6b, E=Se; 6c, E=S), respectively. The disele…
Computational Analysis of n→π* Back-Bonding in Metallylene–Isocyanide Complexes R2MCNR′ (M = Si, Ge, Sn; R = tBu, Ph; R′ = Me, tBu, Ph)
A detailed computational investigation of orbital interactions in metal–carbon bonds of metallylene–isocyanide adducts of the type R2MCNR′ (M = Si, Ge, Sn; R, R′ = alkyl, aryl) was performed using density functional theory and different methods based on energy decomposition analysis. Similar analyses have not been carried out before for metal complexes of isocyanides, even though the related carbonyl complexes have been under intense investigations throughout the years. The results of our work reveal that the relative importance of π-type back-bonding interactions in these systems increases in the sequence Sn < Ge ≪ Si, and in contrast to some earlier assumptions, the π-component cannot be …
Characterization of β-B-Agostic Isomers in Zirconocene Amidoborane Complexes
The reaction of Cp(x)(2)ZrCl(2) (Cp(x) = Cp, Cp*) with ammonia borane in presence of n-butyllithium yielded Cp(2)Zr(Cl)NH(2)BH(3) and Cp(x)(2)Zr(H)NH(2)BH(3). These derivatives are isoelectronic with the ethyl zirconocene chloride and hydride, respectively, and feature a chelating amidoborane ligand coordinating through a Zr-N bond and a Zr-H-B bridge. In solution, each of the complexes consists of an equilibrium mixture of two isomers differing in the orientation of the amidoborane ligand with respect to the Zr-X bond (X = H, Cl), while in the solid state, only one isomer was observed. Such isomers have not been characterized for any metal complexes containing the isoelectronic beta-agosti…
The Monomeric Alanediyl : AlAr i Pr8 (Ar i Pr8 = C 6 H-2,6-(C 6 H 2 -2,4,6-Pr i 3 ) 2 -3,5-Pr i 2 ): An Organoaluminum(I) Compound with a One-Coordinate Aluminum Atom
A Monomeric Aluminum Imide (Iminoalane) with Al–N Triple-Bonding: Bonding Analysis and Dispersion Energy Stabilization
The reaction of :AlAriPr8 (AriPr8 = C6H-2,6-(C6H2-2,4,6-iPr3)2-3,5-iPr2) with ArMe6N3 (ArMe6 = C6H3-2,6-(C6H2-2,4,6-Me3)2) in hexanes at ambient temperature gave the aluminum imide AriPr8AlNArMe6 (1). Its crystal structure displayed short Al–N distances of 1.625(4) and 1.628(3) Å with linear (C–Al–N–C = 180°) or almost linear (C–Al–N = 172.4(2)°; Al–N–C = 172.5(3)°) geometries. DFT calculations confirm linear geometry with an Al–N distance of 1.635 Å. According to energy decomposition analysis, the Al–N bond has three orbital components totaling −1350 kJ mol–1 and instantaneous interaction energy of −551 kJ mol–1 with respect to :AlAriPr8 and ArMe6N̈:. Dispersion accounts for −89 kJ mol–1, …
Assembly of a planar, tricyclic B4N8 framework with s-indacene structure.
A neutral, formally 16pi-electron, tricyclic tetrahydrazidotetraborane was obtained in a two-step procedure involving self-assembly of a dilithiodiborate with B(4)N(8) framework and subsequent oxidation of the phenylborate moieties to boranes and biphenyl using Fe(II) as an oxidant.
Non-Innocent Base Properties of 3- and 4-Pyridyl-dithia- and Diselenadiazolyl Radicals : The Effect of N-Methylation
International audience; Condensation of persilylated nicotinimideamide and isonicotinimideamide with sulfur monochloride affords double salts of the 3-, 4-pyridyl-substituted 1,2,3,5-dithiadiazolylium DTDA cations of the general formula [3-, 4-pyDTDA][Cl][HCl] in which the pyridyl nitrogen serves as a noninnocent base. Reduction of these salts with triphenylantimony followed by deprotonation of the intermediate-protonated radical affords the free base radicals [3-, 4-pyDTDA], the crystal structures of which, along with those of their diselenadiazolyl analogues [3-, 4-pyDSDA], have been characterized by powder or single-crystal X-ray diffraction. The crystal structures consist of “pancake” π…
Mono‐ and Bis(imidazolidinium ethynyl) Cations and Reduction of the Latter To Give an Extended Bis‐1,4‐([3]Cumulene)‐ p ‐carboquinoid System
An extended π-system containing two [3]cumulene fragments separated by a p-carboquinoid and stabilized by two capping N-heterocyclic carbenes (NHCs) has been prepared. Mono- and bis(imidazolidinium ethynyl) cations have also been synthesized from the reaction of an NHC with phenylethynyl bromide or 1,4-bis(bromoethynyl)benzene. Cyclic voltammetry coupled with synthetic and structural studies showed that the dication is readily reduced to a neutral, singlet bis-1,4-([3]cumulene)-p-carboquinoid as a result of the π-accepting properties of the capping NHCs.
Boron–nitrogen substituted dihydroindeno[1,2-b]fluorene derivatives as acceptors in organic solar cells
The electrophilic borylation of 2,5-diarylpyrazines results in the formation of boron–nitrogen doped dihydroindeno[1,2-b]fluorene which can be synthesized using standard Schlenk techniques and worked up and handled readily under atmospheric conditions. Through transmetallation via diarylzinc reagents a series of derivatives were synthesized which show broad visible to near-IR light absorption profiles that highlight the versatility of this BN substituted core for use in optoelectronic devices. The synthesis is efficient, scalable and allows for tuning through changes in substituents on the planar heterocyclic core and at boron. Exploratory evaluation in organic solar cell devices as non-ful…
Weak interactions between trivalent pnictogen centers: computational analysis of bonding in dimers X3E...EX3 (E = pnictogen, X = halogen).
The nature of weak interactions in dimers X(3)E...EX(3) (E = N-Bi, X = F-I) was investigated by wave function and density functional theory (DFT)-based methods. Out of the 20 systems studied, 10 are found to be bound at the CP-MP2 and LMP2 levels of theory. Detailed partition of the interaction energy into different components revealed that dispersion is the primary force holding the dimers together but there also exists an important ionic component whose contribution increases with increasing halogen size. As expected, standard density functionals fail to describe bonding in the studied systems. However, the performance of DFT methods can be easily improved via empirical dispersion correct…
The Monomeric Alanediyl : AlAriPr8 (AriPr8 = C6H-2,6-(C6H2-2,4,6-Pri3)2-3,5-Pri2) : An Organoaluminum(I) Compound with a One-Coordinate Aluminum Atom
Reduction of the aluminum iodide AlI2AriPr8 (1; AriPr8 = C6H-2,6-(C6H2-2,4,6-Pri3)2-3,5-Pri2) with 5% w/w Na/NaCl in hexanes gave a dark red solution from which the monomeric alanediyl :AlAriPr8 (2) was isolated in ca. 28% yield as yellow-orange crystals. Compounds 1 and 2 were characterized by X-ray crystallography, electronic and NMR spectroscopy, and theoretical calculations. The Al atom in 2 is one-coordinate, and the compound displays two absorptions in its electronic spectrum at 354 and 455 nm. It reacts with H2 under ambient conditions to give the aluminum hydride {AlH(μ-H)AriPr8}2, probably via a weakly bound dimer of 2 as an intermediate. peerReviewed
Reactions of m-Terphenyl-Stabilized Germylene and Stannylene with Water and Methanol: Oxidative Addition versus Arene Elimination and Different Reaction Pathways for Alkyl- and Aryl-Substituted Species
Reactions of the divalent germylene Ge(ArMe6)2 (ArMe6 = C6H3-2,6-{C6H2-2,4,6-(CH3)3}2) with water or methanol gave the Ge(IV) insertion product (ArMe6)2Ge(H)OH (1) or (ArMe6)2Ge(H)OMe (2), respectively. In contrast, its stannylene congener Sn(ArMe6)2 reacted with water or methanol to produce the Sn(II) species {ArMe6Sn(μ-OH)}2 (3) or {ArMe6Sn(μ-OMe)}2 (4), respectively, with elimination of ArMe6H. Compounds 1–4 were characterized by IR and NMR spectroscopy as well as by X-ray crystallography. Density functional theory calculations yielded mechanistic insight into the formation of (ArMe6)2Ge(H)OH and {ArMe6Sn(μ-OH)}2. The insertion of an m-terphenyl-stabilized germylene into the O–H bond was…
Synthesis, structure and photophysical properties of a highly luminescent terpyridine-diphenylacetylene hybrid fluorophore and its metal complexes
A new fluorescent terpyridyl-diphenylacetylene hybrid fluorophore 4'-[4-{(4-methoxyphenyl)ethynyl}phenyl]-2,2':6',2''-terpyridine, L, was synthesized via Sonogashira cross-coupling of 4'-(4-bromophenyl)-2,2':6',2''-terpyridine and 4-ethynylanisole in the presence of Pd(PPh3)4/CuI as a catalyst. The solid state structure of L shows a trans arrangement of pyridine nitrogen atoms along the interannular bond in the terpyridine domain. Five transition metal complexes of L, {[FeL2](CF3SO3)2 (1), [ZnL2](ClO4)2 (2), [CdL2](ClO4)2 (3), [RuL2](PF6)2 (4), and PtMe3IL (5)}, have also been synthesized and characterized by spectroscopic methods and single crystal X-ray analysis. The X-ray crystal structu…
Group 13 complexes of dipyridylmethane, a forgotten ligand in coordination chemistry.
The reactions of dipyridylmethane (dpma) with group 13 trichlorides were investigated in 1 : 1 and 1 : 2 molar ratios using NMR spectroscopy and X-ray crystallography. With 1 : 1 stoichiometry and Et2O as solvent, reactions employing AlCl3 or GaCl3 gave mixtures of products with the salt [(dpma)2MCl2](+)[MCl4](-) (M = Al, Ga) as the main species. The corresponding reactions in 1 : 2 molar ratio gave similar mixtures but with [(dpma)MCl2](+)[MCl4](-) as the primary product. Pure salts [(dpma)AlCl2](+)[Cl](-) and [(dpma)AlCl2](+)[AlCl4](-) could be obtained by performing the reactions in CH3CN. In the case of InCl3, a neutral monoadduct (dpma)InCl3 formed regardless of the stoichiometry emplo…
A Germanium Isocyanide Complex Featuring (n -> π*) Back-Bonding and Its Conversion to a Hydride/Cyanide Product via C–H Bond Activation under Mild Conditions
Reaction of the diarylgermylene Ge(Ar(Me(6)))(2) [Ar(Me(6)) = C(6)H(3)-2,6-(C(6)H(2)-2,4,6-(CH(3))(3))(2)] with tert-butyl isocyanide gave the Lewis adduct species (Ar(Me(6)))(2)GeCNBu(t), in which the isocyanide ligand displays a decreased C-N stretching frequency consistent with an n → π* back-bonding interaction. Density functional theory confirmed that the HOMO is a Ge-C bonding combination between the lone pair of electrons on the germanium atom and the C-N π* orbital of the isocyanide ligand. The complex undergoes facile C-H bond activation to produce a new diarylgermanium hydride/cyanide species and isobutene via heterolytic cleavage of the N-Bu(t) bond.
Bis[cyclic (alkyl)(amino)carbene] isomers : Stable trans-bis(CAAC) versus facile olefin formation for cis-bis(CAAC)
Isomeric bis(aldiminium) salts with a 1,4-cyclohexylene framework were synthesized. The first isolable bis(CAAC) was prepared from the trans-stereoisomer and its ditopic ligand competency was proven by conversion to iridium(I) and rhodium(I) complexes. Upon deprotonation, the cis-isomer yielded an electron rich olefin via a classic, proton-catalyzed pathway. The C[double bond, length as m-dash]C bond formation from the desired cis-bis(CAAC) was shown to be thermodynamically very favorable and to involve a small activation barrier. Compounds that can be described as insertion products of the cis-bis(CAAC) into the E–H bonds of NH3, CH3CN and H2O were also identified. peerReviewed
Electronic structure of the glyoxalbis(2-hydroxyanil) (gha) ligand in [CoIII(gha)(PPh3)2]+: radical vs. non-radical states
The synthesis, structure and spectroscopic properties of a complex salt [CoIII(gha)(PPh3)2][CoIICl3(PPh3)]·C2H5OH (1) are reported; gha = glyoxalbis(2-hydroxyanil). This is the first single crystal X-ray structure of a (gha)2− complex with a transition element. Though the determined bond parameters and UV-Vis spectroscopic data correlate well with a diradical description for the cation in 1, detailed electronic structure calculations using density functional theory confirm that [Co(gha)(PPh3)2]+ can be described as a closed shell singlet species which nevertheless displays an interesting electronic structure with significant electron transfer to the formally unoccupied LUMO of the square pl…
Structurally simple complexes of CO2
The ability to bind CO2 through the formation of low-energy, easily-broken, bonds could prove invaluable in a variety of chemical contexts. For example, weak bonds to CO2 would greatly decrease the cost of the energy-intensive sorbent-regeneration step common to most carbon capture technologies. Furthermore, exploration of this field could lead to the discovery of novel CO2 chemistry. Reduction of complexed carbon dioxide might generate chemical feedstocks for the preparation of value-added products, particularly transportation fuels or fuel precursors. Implementation on a large scale could help to drastically reduce CO2 concentrations in the atmosphere. However, literature examples of weak…
Synthesis, reactivity, and computational analysis of halophosphines supported by dianionic guanidinate ligands.
The reported chemistry and reactivity of guanidinate supported group 15 elements in the +3 oxidation state, particularly phosphorus, is limited when compared to their ubiquity in supporting metallic elements across the periodic table. We have synthesized a series of chlorophosphines utilizing homo- and heteroleptic (dianionic)guanidinates and have completed a comprehensive study of their reactivity. Most notable is the reluctancy of these four-membered rings to form the corresponding N-heterocyclic phosphenium cations, the tendency to chemically and thermally eliminate carbodiimide, and the scarcely observed ring expansion by insertion of a chloro(imino)phosphine into a P-N bond of the P-N-…
Reaction of LiArMe6 (ArMe6= C6H3-2,6-(C6H2-2,4,6-Me3)2) with indium(I)chloride yields three m-terphenyl stabilized mixed-valent organoindium subhalides
Abstract Indium(I)chloride reacts with LiAr Me 6 ( Ar Me 6 = C6H3-2,6-(C6H2-2,4,6-Me3)2) in THF to give three new mixed-valent organoindium subhalides. While the 1:1 reaction of InCl with LiAr Me 6 yields the known metal-rich cluster In8( Ar Me 6 )4 (1), the use of freshly prepared LiAr Me 6 led to incorporation of iodide, derived from the synthesis of LiAr Me 6 , into the structures, to afford In4( Ar Me 6 )4I2 (2) along with minor amounts of In3( Ar Me 6 )3I2 (3). When the same reaction was performed in 4:3 stoichiometry, the mixed-halide compound In3( Ar Me 6 )3ClI (4) was obtained. Further increasing the chloride:aryl ligand ratio resulted in the formation of the known mixed-halide spe…
Trapping Rare and Elusive Phosphinidene Chalcogenides
Four-membered rings with a P2Ch2 core (Ch=S, Se) and phosphorus in the +3 oxidation state have been synthesized. The utility of these rings as a source of monomeric phosphinidene chalcogenides was probed by the addition of an N-heterocyclic carbene, resulting in a base-stabilized phosphinidene sulfide. Similarly, persistence of the phosphinidene selenide in solution was shown through cycloaddition chemistry with 2,3-dimethylbutadiene at elevated temperatures. The observed reactivity was explained by detailed computational work that established the conditions upon which the P2Ch2 rings can liberate phosphinidene chalcogenides. peerReviewed
Counterintuitive Mechanisms of the Addition of Hydrogen and Simple Olefins to Heavy Group 13 Alkene Analogues
The mechanism of the reaction of olefins and hydrogen with dimetallenes ArMMAr (Ar = aromatic group; M = Al or Ga) was studied by density functional theory calculations and experimental methods. The digallenes, for which the most experimental data are available, are extensively dissociated to gallanediyl monomers, :GaAr, in hydrocarbon solution, but the calculations and experimental data showed also that they react with simple olefins, such as ethylene, as intact ArGaGaAr dimers via stepwise [2 + 2 + 2] cycloadditions due to their considerably lower activation barriers vis-à-vis the gallanediyl monomers, :GaAr. This pathway was preferred over the [2 + 2] cycloaddition of olefin to monomeric…
Unusual B4N2C2 Ligand in a Ruthenium Pseudo-Triple-Decker Sandwich Complex Displaying Three Reversible Electron-Transfer Steps
Hydrogen activation with perfluorinated organoboranes: 1,2,3-tris(pentafluorophenyl)-4,5,6,7-tetrafluoro-1-boraindene
The perfluorinated boraindene was synthesized and fully characterized. Both computational and crystallographic data show that is antiaromatic. Compound was shown to react reversibly with H2 and to catalyse the hydrogenation of cyclohexene. The mechanism of catalysis was probed experimentally and computationally.
Comment on “Crystallographic Snapshot of an Arrested Intermediate in the Biomimetic Activation of CO2”
Out of focus: A recent Communication published in this journal describes the synthesis of [nBu4 N]HCO3 . The authors performed a single-crystal X-ray study that revealed a putative species described as an incipient hydroxide ion engaging in a long, and presumably weak, interaction with CO2 . Our recent exploration of the coordination chemistry of CO2 with small ions leads us to believe that such an exceptional bonding situation is unlikely. Instead, we argue that the crystal structure is that of [nBu4 N]O2 CCH3 and therefore not representative of the bulk powder from the synthesis.
New Insights into the Chemistry of Imidodiphosphinates from Investigations of Tellurium-Centered Systems
Dichalcogenido-imidodiphosphinates, [N(PR(2)E)(2)](-) (R = alkyl, aryl), are chelating ligands that readily form cyclic complexes with main group metals, transition metals, lanthanides, and actinides. Since their discovery in the early 1960s, researchers have studied the structural chemistry of the resulting metal complexes (where E = O, S, Se) extensively and identified a variety of potential applications, including as NMR shift reagents, luminescent complexes in photonic devices, or single-source precursors for metal sulfides or selenides. In 2002, a suitable synthesis of the tellurium analogs [N(PR(2)Te)(2)](-) was developed. In this Account, we describe comprehensive investigations of t…
1‑Phenyl-3-(pyrid-2-yl)benzo[e][1,2,4]triazinyl: The First "Blatter Radical" for Coordination Chemistry
A neutral air- and moisture-stable N,N′-chelating radical ligand, 1-phenyl-3-(pyrid-2-yl)benzo[e][1,2,4]triazinyl (1) was synthesized and characterized by electron paramagnetic resonance spectroscopy, X-ray crystallography, and magnetic measurements. Subsequent reaction of 1 with Cu(hfac)2·2H2O (hfac = hexafluoroacetylacetonate) under ambient conditions afforded the coordination complex Cu(1)(hfac)2 in which the radical binds to the metal in a bidentate fashion. Magnetic susceptibility data collected from 1.8 to 300 K indicate a strong ferromagnetic metal-radical interaction in the complex and weak antiferromagnetic radical···radical interactions between the Cu(1)(hfac)2 units. Detailed com…
Theoretical investigation of paramagnetic diazabutadiene gallium(III)-pnictogen complexes: insights into the interpretation and simulation of electron paramagnetic resonance spectra.
The electronic structures and the spin density distributions of the paramagnetic gallium 1,4-diaza(1,3)butadiene (DAB) model systems [((t)Bu-DAB)Ga(I)[Pn(SiH3)2]]* and the related dipnictogen species [((t)Bu-DAB)Ga[Pn(SiH3)2]2]* (Pn = N, P, As) were studied using density functional theory. The calculations demonstrate that all systems share a qualitatively similar electronic structure and are primarily ligand-centered pi-radicals. The calculated electron paramagnetic resonance (EPR) hyperfine coupling constants (HFCCs) for these model systems were optimized using iterative methods and were used to create accurate spectral simulations of the parent radicals [((t)Bu-DAB)Ga(I)[Pn(SiMe3)2]]* (P…
Role of Weak Hydrogen Bonds and Halogen Bonds in 5-Halo-1,3-dimethyluracils and Their Cocrystals—A Combined Experimental and Computational Study
Seven single crystals containing either N,N-dimethyluracil (DMHU) or one of its 5-halogenated derivatives (DMXU; X = F, Cl, Br, I) were prepared using N,N-dimethylformamide as the crystallization solvent. Single crystal X-ray diffraction and quantum chemical calculations carried out at the spin component scaled local MP2 level of theory were then used to study the intramolecular halogen and nonconventional hydrogen bonds present in the structures. The results were compared to and contrasted with the previously reported data for uracil and its halogenated derivatives. In particular, the intermolecular interactions in DMIU were compared to the halogen and hydrogen bonds in 5-iodouracil that, …
Dihydrogen Activation by Antiaromatic Pentaarylboroles
Facile metal-free splitting of molecular hydrogen (H(2)) is crucial for the utilization of H(2) without the need for toxic transition-metal-based catalysts. Frustrated Lewis pairs (FLPs) are a new class of hydrogen activators wherein interactions with both a Lewis acid and a Lewis base heterolytically disrupt the hydrogen-hydrogen bond. Here we describe the activation of hydrogen exclusively by a boron-based Lewis acid, perfluoropentaphenylborole. This antiaromatic compound reacts extremely rapidly with H(2) in both solution and the solid state to yield boracyclopent-3-ene products resulting from addition of hydrogen atoms to the carbons alpha to boron in the starting borole. The disruption…
Nickel as a Lewis Base in a T‐Shaped Nickel(0) Germylene Complex Incorporating a Flexible Bis(NHC) Ligand
Flexible, chelating bis(NHC) ligand 2, able to accommodate both cis- and trans-coordination modes, was used to synthesize (2)Ni(η 2 -cod), 3. In reaction with GeCl2, this produced (2)NiGeCl2, 4, featuring a T-shaped Ni(0) and a pyramidal Ge center. Complex 4 could also be prepared from [(2)GeCl]Cl, 5, and Ni(cod)2, in a reaction that formally involved Ni-Ge transmetalation, followed by coordination of the extruded GeCl2 moiety to Ni. A computational analysis showed that 4 possesses considerable multiconfigurational character and the Ni→Ge bond is formed through σ-donation from the Ni 4s, 4p, and 3d orbitals to Ge. (NHC)2Ni(cod) complexes 9 and 10, as well as (NHC)2GeCl2 derivative 11, incor…
CCDC 956380: Experimental Crystal Structure Determination
Related Article: Adrian Y. Houghton, Virve A. Karttunen, Warren E. Piers, Heikki M. Tuononen|2014|Chem.Commun.|50|1295|doi:10.1039/C3CC48796B
CCDC 1401116: Experimental Crystal Structure Determination
Related Article: Michelle Faust, Aimee M. Bryan, Akseli Mansikkamäki, Petra Vasko, Marilyn M. Olmstead, Heikki M. Tuononen, Fernande Grandjean, Gary J. Long and Philip P. Power|2015|Angew.Chem.,Int.Ed.|54|12914|doi:10.1002/anie.201505518
CCDC 1549500: Experimental Crystal Structure Determination
Related Article: Brian M. Barry, R. Graeme Soper, Juha Hurmalainen, Akseli Mansikkamäki, Katherine N. Robertson, William L. McClennan, Alex J. Veinot, Tracey L. Roemmele, Ulrike Werner-Zwanziger, René T. Boeré, Heikki M. Tuononen, Jason A. C. Clyburne, Jason D. Masuda|2018|Angew.Chem.,Int.Ed.|57|749|doi:10.1002/anie.201711031
CCDC 1414953: Experimental Crystal Structure Determination
Related Article: Petra Vasko, Virva Kinnunen, Jani O. Moilanen, Tracey L. Roemmele, René T. Boeré, Jari Konu, Heikki M. Tuononen|2015|Dalton Trans.|44|18247|doi:10.1039/C5DT02830B
CCDC 1401114: Experimental Crystal Structure Determination
Related Article: Michelle Faust, Aimee M. Bryan, Akseli Mansikkamäki, Petra Vasko, Marilyn M. Olmstead, Heikki M. Tuononen, Fernande Grandjean, Gary J. Long and Philip P. Power|2015|Angew.Chem.,Int.Ed.|54|12914|doi:10.1002/anie.201505518
CCDC 2181987: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Awatef Ayadi, Noora Svahn, Manu K. Lahtinen, Mathieu Rouzières, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman|2022|Cryst.Growth Des.|22|7110|doi:10.1021/acs.cgd.2c00795
CCDC 1505083: Experimental Crystal Structure Determination
Related Article: Madison L. McCrea-Hendrick, ChristineA. Caputo, Jarno Linnera, Petra Vasko, CoryM. Weinstein, James C. Fettinger, Heikki M. Tuononen, and PhilipP. Power|2016|Organometallics|35|2759|doi:10.1021/acs.organomet.6b00519
CCDC 1569579: Experimental Crystal Structure Determination
Related Article: Cameron M. E. Graham, Juuso Valjus, Taylor E. Pritchard, Paul D. Boyle, Heikki M. Tuononen, Paul J. Ragogna|2017|Inorg.Chem.|56|13500|doi:10.1021/acs.inorgchem.7b02217
CCDC 1963046: Experimental Crystal Structure Determination
Related Article: Jackson P. Knott, Mikko M. Hanninen, J. Mikko Rautiainen, Heikki M. Tuononen, Paul G. Hayes|2017|J.Organomet.Chem.|845|135|doi:10.1016/j.jorganchem.2017.04.008
CCDC 1424396: Experimental Crystal Structure Determination
Related Article: Ramalingam Thirumoorthi, Tristram Chivers, Susanna Häggman, Akseli Mansikkamäki, Ian S. Morgan, Heikki M. Tuononen, Manu Lahtinen, Jari Konu|2016|Dalton Trans.|45|12691|doi:10.1039/C6DT02565J
CCDC 1424395: Experimental Crystal Structure Determination
Related Article: Ramalingam Thirumoorthi, Tristram Chivers, Susanna Häggman, Akseli Mansikkamäki, Ian S. Morgan, Heikki M. Tuononen, Manu Lahtinen, Jari Konu|2016|Dalton Trans.|45|12691|doi:10.1039/C6DT02565J
CCDC 2090125: Experimental Crystal Structure Determination
Related Article: Chris Gendy, J. Mikko Rautiainen, Aaron Mailman, Heikki M. Tuononen|2021|Chem.-Eur.J.|27|14405|doi:10.1002/chem.202102804
CCDC 1057508: Experimental Crystal Structure Determination
Related Article: Ian S. Morgan, Akseli Mansikkamäki, Georgia A. Zissimou, Panayiotis A. Koutentis, Mathieu Rouzières, Rodolphe Clérac and Heikki M. Tuononen|2015|Chem.-Eur.J.|21|15843|doi:10.1002/chem.201501343
CCDC 1863396: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416
CCDC 1575610: Experimental Crystal Structure Determination
Related Article: Matthew M. Morgan, Evan A. Patrick, J. Mikko Rautiainen, Heikki M. Tuononen, Warren E. Piers, Denis M. Spasyuk|2017|Organometallics|36|2541|doi:10.1021/acs.organomet.7b00051
CCDC 2098810: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416
CCDC 1861477: Experimental Crystal Structure Determination
Related Article: Chris Gendy, Akseli Mansikkamäki, Juuso Valjus, Joshua Heidebrecht, Paul Chuk-Yan Hui, Guy M. Bernard, Heikki M. Tuononen, Roderick E. Wasylishen, Vladimir K. Michaelis, Roland Roesler|2019|Angew.Chem.,Int.Ed.|58|154|doi:10.1002/anie.201809889
CCDC 1414956: Experimental Crystal Structure Determination
Related Article: Petra Vasko, Virva Kinnunen, Jani O. Moilanen, Tracey L. Roemmele, René T. Boeré, Jari Konu, Heikki M. Tuononen|2015|Dalton Trans.|44|18247|doi:10.1039/C5DT02830B
CCDC 955314: Experimental Crystal Structure Determination
Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a
CCDC 1022891: Experimental Crystal Structure Determination
Related Article: Aku Suhonen, Ian S. Morgan, Elisa Nauha, Kaisa Helttunen, Heikki M. Tuononen, Maija Nissinen|2015|Cryst.Growth Des.|15|2602|doi:10.1021/acs.cgd.5b00424
CCDC 1861476: Experimental Crystal Structure Determination
Related Article: Chris Gendy, Akseli Mansikkamäki, Juuso Valjus, Joshua Heidebrecht, Paul Chuk-Yan Hui, Guy M. Bernard, Heikki M. Tuononen, Roderick E. Wasylishen, Vladimir K. Michaelis, Roland Roesler|2019|Angew.Chem.,Int.Ed.|58|154|doi:10.1002/anie.201809889
CCDC 1584568: Experimental Crystal Structure Determination
Related Article: Matthew M. Morgan, J. Mikko Rautiainen, Warren E. Piers, Heikki M. Tuononen, Chris Gendy|2018|Dalton Trans.|47|734|doi:10.1039/C7DT04350C
CCDC 2090128: Experimental Crystal Structure Determination
Related Article: Chris Gendy, J. Mikko Rautiainen, Aaron Mailman, Heikki M. Tuononen|2021|Chem.-Eur.J.|27|14405|doi:10.1002/chem.202102804
CCDC 2097023: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Awatef Ayadi, Manu K. Lahtinen, Itziar Oyarzabal, Sébastien Bonhommeau, Mathieu Rouzières, Corine Mathonière, Heikki M. Tuononen, Rodolphe Clérac, Aaron Mailman|2021|J.Am.Chem.Soc.|143|15912|doi:10.1021/jacs.1c07468
CCDC 1057512: Experimental Crystal Structure Determination
Related Article: Ian S. Morgan, Akseli Mansikkamäki, Georgia A. Zissimou, Panayiotis A. Koutentis, Mathieu Rouzières, Rodolphe Clérac and Heikki M. Tuononen|2015|Chem.-Eur.J.|21|15843|doi:10.1002/chem.201501343
CCDC 2182640: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Awatef Ayadi, Noora Svahn, Manu K. Lahtinen, Mathieu Rouzières, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman|2022|Cryst.Growth Des.|22|7110|doi:10.1021/acs.cgd.2c00795
CCDC 1557848: Experimental Crystal Structure Determination
Related Article: Filip Topić, Rakesh Puttreddy, J. Mikko Rautiainen, Heikki M. Tuononen, Kari Rissanen|2017|CrystEngComm|19|4960|doi:10.1039/C7CE01381G
CCDC 1022892: Experimental Crystal Structure Determination
Related Article: Aku Suhonen, Ian S. Morgan, Elisa Nauha, Kaisa Helttunen, Heikki M. Tuononen, Maija Nissinen|2015|Cryst.Growth Des.|15|2602|doi:10.1021/acs.cgd.5b00424
CCDC 2022317: Experimental Crystal Structure Determination
Related Article: Kristian L. Mears, Cary R. Stennett, Elina K. Taskinen, Caroline E. Knapp, Claire J. Carmalt, Heikki M. Tuononen, Philip P. Power|2020|J.Am.Chem.Soc.|142|19874|doi:10.1021/jacs.0c10099
CCDC 2097022: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Awatef Ayadi, Manu K. Lahtinen, Itziar Oyarzabal, Sébastien Bonhommeau, Mathieu Rouzières, Corine Mathonière, Heikki M. Tuononen, Rodolphe Clérac, Aaron Mailman|2021|J.Am.Chem.Soc.|143|15912|doi:10.1021/jacs.1c07468
CCDC 986380: Experimental Crystal Structure Determination
Related Article: Luke J. Murphy, Katherine N. Robertson, Scott G. Harroun, Christa L. Brosseau, Ulrike Werner-Zwanziger, Jani Moilanen, Heikki M. Tuononen, Jason A.C. Clyburne|2014|Science|344|75|doi:10.1126/science.1250808
CCDC 1575611: Experimental Crystal Structure Determination
Related Article: Matthew M. Morgan, Evan A. Patrick, J. Mikko Rautiainen, Heikki M. Tuononen, Warren E. Piers, Denis M. Spasyuk|2017|Organometallics|36|2541|doi:10.1021/acs.organomet.7b00051
CCDC 1036417: Experimental Crystal Structure Determination
Related Article: Petra Vasko, Shuai Wang, Heikki M. Tuononen, Philip P. Power|2015|Angew.Chem.,Int.Ed.|54|3802|doi:10.1002/anie.201411595
CCDC 956381: Experimental Crystal Structure Determination
Related Article: Adrian Y. Houghton, Virve A. Karttunen, Warren E. Piers, Heikki M. Tuononen|2014|Chem.Commun.|50|1295|doi:10.1039/C3CC48796B
CCDC 1426934: Experimental Crystal Structure Determination
Related Article: Gustavo Portalone, Jani O. Moilanen, Heikki M. Tuononen, Kari Rissanen|2016|Cryst.Growth Des.|16|2631|doi:10.1021/acs.cgd.5b01727
CCDC 955316: Experimental Crystal Structure Determination
Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a
CCDC 929110: Experimental Crystal Structure Determination
Related Article: Sari M. Närhi, Johanna Kutuniva, Marja K. Lajunen, Manu K. Lahtinen, Heikki M. Tuononen, Antti J. Karttunen, Raija Oilunkaniemi, Risto S. Laitinen|2014|Spectrochim.Acta,Part A|117|728|doi:10.1016/j.saa.2013.09.063
CCDC 1861475: Experimental Crystal Structure Determination
Related Article: Chris Gendy, Akseli Mansikkamäki, Juuso Valjus, Joshua Heidebrecht, Paul Chuk-Yan Hui, Guy M. Bernard, Heikki M. Tuononen, Roderick E. Wasylishen, Vladimir K. Michaelis, Roland Roesler|2019|Angew.Chem.,Int.Ed.|58|154|doi:10.1002/anie.201809889
CCDC 1555899: Experimental Crystal Structure Determination
Related Article: Jade Pratt, Aimee M. Bryan, Michelle Faust, Jessica N. Boynton, Petra Vasko, Brian D. Rekken, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2018|Inorg.Chem.|57|6491|doi:10.1021/acs.inorgchem.8b00551
CCDC 1861479: Experimental Crystal Structure Determination
Related Article: Chris Gendy, Akseli Mansikkamäki, Juuso Valjus, Joshua Heidebrecht, Paul Chuk-Yan Hui, Guy M. Bernard, Heikki M. Tuononen, Roderick E. Wasylishen, Vladimir K. Michaelis, Roland Roesler|2019|Angew.Chem.,Int.Ed.|58|154|doi:10.1002/anie.201809889
CCDC 1505088: Experimental Crystal Structure Determination
Related Article: Madison L. McCrea-Hendrick, ChristineA. Caputo, Jarno Linnera, Petra Vasko, CoryM. Weinstein, James C. Fettinger, Heikki M. Tuononen, and PhilipP. Power|2016|Organometallics|35|2759|doi:10.1021/acs.organomet.6b00519
CCDC 955306: Experimental Crystal Structure Determination
Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a
CCDC 1828738: Experimental Crystal Structure Determination
Related Article: Jade Pratt, Aimee M. Bryan, Michelle Faust, Jessica N. Boynton, Petra Vasko, Brian D. Rekken, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2018|Inorg.Chem.|57|6491|doi:10.1021/acs.inorgchem.8b00551
CCDC 1557843: Experimental Crystal Structure Determination
Related Article: Filip Topić, Rakesh Puttreddy, J. Mikko Rautiainen, Heikki M. Tuononen, Kari Rissanen|2017|CrystEngComm|19|4960|doi:10.1039/C7CE01381G
CCDC 2115737: Experimental Crystal Structure Determination
Related Article: Chris Gendy, Juuso Valjus, Roland Roesler, Heikki M. Tuononen|2022|Angew.Chem.,Int.Ed.|61|e202115692|doi:10.1002/anie.202115692
CCDC 2097021: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Awatef Ayadi, Manu K. Lahtinen, Itziar Oyarzabal, Sébastien Bonhommeau, Mathieu Rouzières, Corine Mathonière, Heikki M. Tuononen, Rodolphe Clérac, Aaron Mailman|2021|J.Am.Chem.Soc.|143|15912|doi:10.1021/jacs.1c07468
CCDC 1549501: Experimental Crystal Structure Determination
Related Article: Brian M. Barry, R. Graeme Soper, Juha Hurmalainen, Akseli Mansikkamäki, Katherine N. Robertson, William L. McClennan, Alex J. Veinot, Tracey L. Roemmele, Ulrike Werner-Zwanziger, René T. Boeré, Heikki M. Tuononen, Jason A. C. Clyburne, Jason D. Masuda|2018|Angew.Chem.,Int.Ed.|57|749|doi:10.1002/anie.201711031
CCDC 1555900: Experimental Crystal Structure Determination
Related Article: Jade Pratt, Aimee M. Bryan, Michelle Faust, Jessica N. Boynton, Petra Vasko, Brian D. Rekken, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2018|Inorg.Chem.|57|6491|doi:10.1021/acs.inorgchem.8b00551
CCDC 1431125: Experimental Crystal Structure Determination
Related Article: Jeremy D. Erickson, Petra Vasko, Ryan D. Riparetti, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2015|Organometallics|34|5785|doi:10.1021/acs.organomet.5b00884
CCDC 1519804: Experimental Crystal Structure Determination
Related Article: Petra Vasko, Juha Hurmalainen, Akseli Mansikkamäki, Anssi Peuronen, Aaron Mailman, Heikki M. Tuononen|2017|Dalton Trans.|46|16004|doi:10.1039/C7DT03243A
CCDC 1557841: Experimental Crystal Structure Determination
Related Article: Filip Topić, Rakesh Puttreddy, J. Mikko Rautiainen, Heikki M. Tuononen, Kari Rissanen|2017|CrystEngComm|19|4960|doi:10.1039/C7CE01381G
CCDC 2098809: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416
CCDC 1405505: Experimental Crystal Structure Determination
Related Article: Rudy M. Brown, Javier Borau Garcia, Juuso Valjus, Christopher J. Roberts, Heikki M. Tuononen, Masood Parvez, and Roland Roesler|2015|Angew.Chem.,Int.Ed.|54|6274|doi:10.1002/anie.201500453
CCDC 2090122: Experimental Crystal Structure Determination
Related Article: Chris Gendy, J. Mikko Rautiainen, Aaron Mailman, Heikki M. Tuononen|2021|Chem.-Eur.J.|27|14405|doi:10.1002/chem.202102804
CCDC 1426935: Experimental Crystal Structure Determination
Related Article: Gustavo Portalone, Jani O. Moilanen, Heikki M. Tuononen, Kari Rissanen|2016|Cryst.Growth Des.|16|2631|doi:10.1021/acs.cgd.5b01727
CCDC 1518784: Experimental Crystal Structure Determination
Related Article: Juha Hurmalainen, Akseli Mansikkamäki, Ian S. Morgan, Anssi Peuronen, Heikki M. Tuononen|2017|Dalton Trans.|46|1377|doi:10.1039/C6DT04504A
CCDC 2097025: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Awatef Ayadi, Manu K. Lahtinen, Itziar Oyarzabal, Sébastien Bonhommeau, Mathieu Rouzières, Corine Mathonière, Heikki M. Tuononen, Rodolphe Clérac, Aaron Mailman|2021|J.Am.Chem.Soc.|143|15912|doi:10.1021/jacs.1c07468
CCDC 955308: Experimental Crystal Structure Determination
Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a
CCDC 956383: Experimental Crystal Structure Determination
Related Article: Adrian Y. Houghton, Virve A. Karttunen, Warren E. Piers, Heikki M. Tuononen|2014|Chem.Commun.|50|1295|doi:10.1039/C3CC48796B
CCDC 1505086: Experimental Crystal Structure Determination
Related Article: Madison L. McCrea-Hendrick, ChristineA. Caputo, Jarno Linnera, Petra Vasko, CoryM. Weinstein, James C. Fettinger, Heikki M. Tuononen, and PhilipP. Power|2016|Organometallics|35|2759|doi:10.1021/acs.organomet.6b00519
CCDC 1427361: Experimental Crystal Structure Determination
Related Article: Felicitas Lips, James C. Fettinger, Akseli Mansikkamäki, Heikki M. Tuononen, and Philip P. Power|2014|J.Am.Chem.Soc.|136|634|doi:10.1021/ja411951y
CCDC 956379: Experimental Crystal Structure Determination
Related Article: Adrian Y. Houghton, Virve A. Karttunen, Warren E. Piers, Heikki M. Tuononen|2014|Chem.Commun.|50|1295|doi:10.1039/C3CC48796B
CCDC 1863394: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416
CCDC 2026034: Experimental Crystal Structure Determination
Related Article: Joshua D. Queen, Annika Lehmann, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2020|J.Am.Chem.Soc.|142|20554|doi:10.1021/jacs.0c10222
CCDC 2181982: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Awatef Ayadi, Noora Svahn, Manu K. Lahtinen, Mathieu Rouzières, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman|2022|Cryst.Growth Des.|22|7110|doi:10.1021/acs.cgd.2c00795
CCDC 1008273: Experimental Crystal Structure Determination
Related Article: Biswa Nath Ghosh, Filip Topić, Prasit Kumar Sahoo, Prasenjit Mal, Jarno Linnera, Elina Kalenius, Heikki M. Tuononen, Kari Rissanen|2015|Dalton Trans.|44|254|doi:10.1039/C4DT02728K
CCDC 929107: Experimental Crystal Structure Determination
Related Article: Sari M. Närhi, Johanna Kutuniva, Marja K. Lajunen, Manu K. Lahtinen, Heikki M. Tuononen, Antti J. Karttunen, Raija Oilunkaniemi, Risto S. Laitinen|2014|Spectrochim.Acta,Part A|117|728|doi:10.1016/j.saa.2013.09.063
CCDC 2181976: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Awatef Ayadi, Noora Svahn, Manu K. Lahtinen, Mathieu Rouzières, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman|2022|Cryst.Growth Des.|22|7110|doi:10.1021/acs.cgd.2c00795
CCDC 2181985: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Awatef Ayadi, Noora Svahn, Manu K. Lahtinen, Mathieu Rouzières, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman|2022|Cryst.Growth Des.|22|7110|doi:10.1021/acs.cgd.2c00795
CCDC 1401113: Experimental Crystal Structure Determination
Related Article: Michelle Faust, Aimee M. Bryan, Akseli Mansikkamäki, Petra Vasko, Marilyn M. Olmstead, Heikki M. Tuononen, Fernande Grandjean, Gary J. Long and Philip P. Power|2015|Angew.Chem.,Int.Ed.|54|12914|doi:10.1002/anie.201505518
CCDC 1519805: Experimental Crystal Structure Determination
Related Article: Petra Vasko, Juha Hurmalainen, Akseli Mansikkamäki, Anssi Peuronen, Aaron Mailman, Heikki M. Tuononen|2017|Dalton Trans.|46|16004|doi:10.1039/C7DT03243A
CCDC 2023412: Experimental Crystal Structure Determination
Related Article: Braulio Michele Puerta Lombardi, Chris Gendy, Benjamin S. Gelfand, Guy M. Bernard, Roderick E. Wasylishen, Heikki M. Tuononen, Roland Roesler|2021|Angew.Chem.,Int.Ed.|60|7077|doi:10.1002/anie.202011301
CCDC 1575616: Experimental Crystal Structure Determination
Related Article: Matthew M. Morgan, Evan A. Patrick, J. Mikko Rautiainen, Heikki M. Tuononen, Warren E. Piers, Denis M. Spasyuk|2017|Organometallics|36|2541|doi:10.1021/acs.organomet.7b00051
CCDC 2182780: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Awatef Ayadi, Noora Svahn, Manu K. Lahtinen, Mathieu Rouzières, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman|2022|Cryst.Growth Des.|22|7110|doi:10.1021/acs.cgd.2c00795
CCDC 2181981: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Awatef Ayadi, Noora Svahn, Manu K. Lahtinen, Mathieu Rouzières, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman|2022|Cryst.Growth Des.|22|7110|doi:10.1021/acs.cgd.2c00795
CCDC 1575614: Experimental Crystal Structure Determination
Related Article: Matthew M. Morgan, Evan A. Patrick, J. Mikko Rautiainen, Heikki M. Tuononen, Warren E. Piers, Denis M. Spasyuk|2017|Organometallics|36|2541|doi:10.1021/acs.organomet.7b00051
CCDC 2131009: Experimental Crystal Structure Determination
Related Article: Braulio M. Puerta Lombardi, Ethan R. Pezoulas, Roope A. Suvinen, Alexander Harrison, Zachary S. Dubrawski, Benjamin S. Gelfand, Heikki M. Tuononen, Roland Roesler|2022|Chem.Commun.|58|6482|doi:10.1039/D2CC01476A
CCDC 1505085: Experimental Crystal Structure Determination
Related Article: Madison L. McCrea-Hendrick, ChristineA. Caputo, Jarno Linnera, Petra Vasko, CoryM. Weinstein, James C. Fettinger, Heikki M. Tuononen, and PhilipP. Power|2016|Organometallics|35|2759|doi:10.1021/acs.organomet.6b00519
CCDC 954558: Experimental Crystal Structure Determination
Related Article: Zachary D. Brown , Petra Vasko , Jeremy D. Erickson , James C. Fettinger , Heikki M. Tuononen , and Philip P. Power|2013|J.Am.Chem.Soc.|135|6257|doi:10.1021/ja4003553
CCDC 2118011: Experimental Crystal Structure Determination
Related Article: Joschua Helmer, Olli J. Pakkanen, Chris Gendy, Alexander Hepp, Heikki M. Tuononen, Felicitas Lips|2022|Chem.Commun.|58|3549|doi:10.1039/D2CC00298A
CCDC 2131017: Experimental Crystal Structure Determination
Related Article: Braulio M. Puerta Lombardi, Ethan R. Pezoulas, Roope A. Suvinen, Alexander Harrison, Zachary S. Dubrawski, Benjamin S. Gelfand, Heikki M. Tuononen, Roland Roesler|2022|Chem.Commun.|58|6482|doi:10.1039/D2CC01476A
CCDC 2065247: Experimental Crystal Structure Determination
Related Article: Joshua D. Queen, Sini Irvankoski, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2021|J.Am.Chem.Soc.|143|6351|doi:10.1021/jacs.1c02463
CCDC 2181983: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Awatef Ayadi, Noora Svahn, Manu K. Lahtinen, Mathieu Rouzières, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman|2022|Cryst.Growth Des.|22|7110|doi:10.1021/acs.cgd.2c00795
CCDC 1426933: Experimental Crystal Structure Determination
Related Article: Gustavo Portalone, Jani O. Moilanen, Heikki M. Tuononen, Kari Rissanen|2016|Cryst.Growth Des.|16|2631|doi:10.1021/acs.cgd.5b01727
CCDC 2182311: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Awatef Ayadi, Noora Svahn, Manu K. Lahtinen, Mathieu Rouzières, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman|2022|Cryst.Growth Des.|22|7110|doi:10.1021/acs.cgd.2c00795
CCDC 2026033: Experimental Crystal Structure Determination
Related Article: Joshua D. Queen, Annika Lehmann, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2020|J.Am.Chem.Soc.|142|20554|doi:10.1021/jacs.0c10222
CCDC 2182459: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Awatef Ayadi, Noora Svahn, Manu K. Lahtinen, Mathieu Rouzières, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman|2022|Cryst.Growth Des.|22|7110|doi:10.1021/acs.cgd.2c00795
CCDC 955309: Experimental Crystal Structure Determination
Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a
CCDC 955315: Experimental Crystal Structure Determination
Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a
CCDC 955300: Experimental Crystal Structure Determination
Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a
CCDC 1549502: Experimental Crystal Structure Determination
Related Article: Brian M. Barry, R. Graeme Soper, Juha Hurmalainen, Akseli Mansikkamäki, Katherine N. Robertson, William L. McClennan, Alex J. Veinot, Tracey L. Roemmele, Ulrike Werner-Zwanziger, René T. Boeré, Heikki M. Tuononen, Jason A. C. Clyburne, Jason D. Masuda|2018|Angew.Chem.,Int.Ed.|57|749|doi:10.1002/anie.201711031
CCDC 2181984: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Awatef Ayadi, Noora Svahn, Manu K. Lahtinen, Mathieu Rouzières, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman|2022|Cryst.Growth Des.|22|7110|doi:10.1021/acs.cgd.2c00795
CCDC 929106: Experimental Crystal Structure Determination
Related Article: Sari M. Närhi, Johanna Kutuniva, Marja K. Lajunen, Manu K. Lahtinen, Heikki M. Tuononen, Antti J. Karttunen, Raija Oilunkaniemi, Risto S. Laitinen|2014|Spectrochim.Acta,Part A|117|728|doi:10.1016/j.saa.2013.09.063
CCDC 941619: Experimental Crystal Structure Determination
Related Article: Biswa Nath Ghosh, Filip Topić, Prasit Kumar Sahoo, Prasenjit Mal, Jarno Linnera, Elina Kalenius, Heikki M. Tuononen, Kari Rissanen|2015|Dalton Trans.|44|254|doi:10.1039/C4DT02728K
CCDC 1863392: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416
CCDC 1584567: Experimental Crystal Structure Determination
Related Article: Matthew M. Morgan, J. Mikko Rautiainen, Warren E. Piers, Heikki M. Tuononen, Chris Gendy|2018|Dalton Trans.|47|734|doi:10.1039/C7DT04350C
CCDC 1536800: Experimental Crystal Structure Determination
Related Article: Petra Vasko, Juha Hurmalainen, Akseli Mansikkamäki, Anssi Peuronen, Aaron Mailman, Heikki M. Tuononen|2017|Dalton Trans.|46|16004|doi:10.1039/C7DT03243A
CCDC 1557842: Experimental Crystal Structure Determination
Related Article: Filip Topić, Rakesh Puttreddy, J. Mikko Rautiainen, Heikki M. Tuononen, Kari Rissanen|2017|CrystEngComm|19|4960|doi:10.1039/C7CE01381G
CCDC 1557847: Experimental Crystal Structure Determination
Related Article: Filip Topić, Rakesh Puttreddy, J. Mikko Rautiainen, Heikki M. Tuononen, Kari Rissanen|2017|CrystEngComm|19|4960|doi:10.1039/C7CE01381G
CCDC 2131011: Experimental Crystal Structure Determination
Related Article: Braulio M. Puerta Lombardi, Ethan R. Pezoulas, Roope A. Suvinen, Alexander Harrison, Zachary S. Dubrawski, Benjamin S. Gelfand, Heikki M. Tuononen, Roland Roesler|2022|Chem.Commun.|58|6482|doi:10.1039/D2CC01476A
CCDC 2118012: Experimental Crystal Structure Determination
Related Article: Joschua Helmer, Olli J. Pakkanen, Chris Gendy, Alexander Hepp, Heikki M. Tuononen, Felicitas Lips|2022|Chem.Commun.|58|3549|doi:10.1039/D2CC00298A
CCDC 1863395: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416
CCDC 2115739: Experimental Crystal Structure Determination
Related Article: Chris Gendy, Juuso Valjus, Roland Roesler, Heikki M. Tuononen|2022|Angew.Chem.,Int.Ed.|61|e202115692|doi:10.1002/anie.202115692
CCDC 1400650: Experimental Crystal Structure Determination
Related Article: Petra Vasko, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2016|Polyhedron|103|164|doi:10.1016/j.poly.2015.09.052
CCDC 2090119: Experimental Crystal Structure Determination
Related Article: Chris Gendy, J. Mikko Rautiainen, Aaron Mailman, Heikki M. Tuononen|2021|Chem.-Eur.J.|27|14405|doi:10.1002/chem.202102804
CCDC 1022889: Experimental Crystal Structure Determination
Related Article: Aku Suhonen, Ian S. Morgan, Elisa Nauha, Kaisa Helttunen, Heikki M. Tuononen, Maija Nissinen|2015|Cryst.Growth Des.|15|2602|doi:10.1021/acs.cgd.5b00424
CCDC 1485222: Experimental Crystal Structure Determination
Related Article: Cameron M. E. Graham, Taylor E. Pritchard, Paul D. Boyle, Juuso Valjus, Heikki M. Tuononen, Paul J. Ragogna|2017|Angew.Chem.,Int.Ed.|56|6236|doi:10.1002/anie.201611196
CCDC 1861473: Experimental Crystal Structure Determination
Related Article: Chris Gendy, Akseli Mansikkamäki, Juuso Valjus, Joshua Heidebrecht, Paul Chuk-Yan Hui, Guy M. Bernard, Heikki M. Tuononen, Roderick E. Wasylishen, Vladimir K. Michaelis, Roland Roesler|2019|Angew.Chem.,Int.Ed.|58|154|doi:10.1002/anie.201809889
CCDC 1022890: Experimental Crystal Structure Determination
Related Article: Aku Suhonen, Ian S. Morgan, Elisa Nauha, Kaisa Helttunen, Heikki M. Tuononen, Maija Nissinen|2015|Cryst.Growth Des.|15|2602|doi:10.1021/acs.cgd.5b00424
CCDC 1569581: Experimental Crystal Structure Determination
Related Article: Cameron M. E. Graham, Juuso Valjus, Taylor E. Pritchard, Paul D. Boyle, Heikki M. Tuononen, Paul J. Ragogna|2017|Inorg.Chem.|56|13500|doi:10.1021/acs.inorgchem.7b02217
CCDC 1414952: Experimental Crystal Structure Determination
Related Article: Petra Vasko, Virva Kinnunen, Jani O. Moilanen, Tracey L. Roemmele, René T. Boeré, Jari Konu, Heikki M. Tuononen|2015|Dalton Trans.|44|18247|doi:10.1039/C5DT02830B
CCDC 1035161: Experimental Crystal Structure Determination
Related Article: Felicitas Lips, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2014|Organometallics|33|6253|doi:10.1021/om500947x
CCDC 2023411: Experimental Crystal Structure Determination
Related Article: Braulio Michele Puerta Lombardi, Chris Gendy, Benjamin S. Gelfand, Guy M. Bernard, Roderick E. Wasylishen, Heikki M. Tuononen, Roland Roesler|2021|Angew.Chem.,Int.Ed.|60|7077|doi:10.1002/anie.202011301
CCDC 1010911: Experimental Crystal Structure Determination
Related Article: Adrian Y. Houghton, Juha Hurmalainen, Akseli Mansikkamäki, Warren E. Piers, Heikki M. Tuononen|2014|Nature Chemistry|6|983|doi:10.1038/nchem.2063
CCDC 1431127: Experimental Crystal Structure Determination
Related Article: Jeremy D. Erickson, Petra Vasko, Ryan D. Riparetti, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2015|Organometallics|34|5785|doi:10.1021/acs.organomet.5b00884
CCDC 1035162: Experimental Crystal Structure Determination
Related Article: Felicitas Lips, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2014|Organometallics|33|6253|doi:10.1021/om500947x
CCDC 1861471: Experimental Crystal Structure Determination
Related Article: Chris Gendy, Akseli Mansikkamäki, Juuso Valjus, Joshua Heidebrecht, Paul Chuk-Yan Hui, Guy M. Bernard, Heikki M. Tuononen, Roderick E. Wasylishen, Vladimir K. Michaelis, Roland Roesler|2019|Angew.Chem.,Int.Ed.|58|154|doi:10.1002/anie.201809889
CCDC 955298: Experimental Crystal Structure Determination
Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a
CCDC 2090127: Experimental Crystal Structure Determination
Related Article: Chris Gendy, J. Mikko Rautiainen, Aaron Mailman, Heikki M. Tuononen|2021|Chem.-Eur.J.|27|14405|doi:10.1002/chem.202102804
CCDC 2115738: Experimental Crystal Structure Determination
Related Article: Chris Gendy, Juuso Valjus, Roland Roesler, Heikki M. Tuononen|2022|Angew.Chem.,Int.Ed.|61|e202115692|doi:10.1002/anie.202115692
CCDC 1955680: Experimental Crystal Structure Determination
Related Article: Christos P. Constantinides, Daniel B. Lawson, Georgia A. Zissimou, Andrey A. Berezin, Aaron Mailman, Maria Manoli, Andreas Kourtellaris, Gregory M. Leitus, Rodolphe Clérac, Heikki M. Tuononen, Panayiotis A. Koutentis|2020|CrystEngComm|22|5453|doi:10.1039/D0CE00789G
CCDC 1863398: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416
CCDC 1008276: Experimental Crystal Structure Determination
Related Article: Biswa Nath Ghosh, Filip Topić, Prasit Kumar Sahoo, Prasenjit Mal, Jarno Linnera, Elina Kalenius, Heikki M. Tuononen, Kari Rissanen|2015|Dalton Trans.|44|254|doi:10.1039/C4DT02728K
CCDC 1431126: Experimental Crystal Structure Determination
Related Article: Jeremy D. Erickson, Petra Vasko, Ryan D. Riparetti, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2015|Organometallics|34|5785|doi:10.1021/acs.organomet.5b00884
CCDC 955313: Experimental Crystal Structure Determination
Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a
CCDC 1057511: Experimental Crystal Structure Determination
Related Article: Ian S. Morgan, Akseli Mansikkamäki, Georgia A. Zissimou, Panayiotis A. Koutentis, Mathieu Rouzières, Rodolphe Clérac and Heikki M. Tuononen|2015|Chem.-Eur.J.|21|15843|doi:10.1002/chem.201501343
CCDC 1549499: Experimental Crystal Structure Determination
Related Article: Brian M. Barry, R. Graeme Soper, Juha Hurmalainen, Akseli Mansikkamäki, Katherine N. Robertson, William L. McClennan, Alex J. Veinot, Tracey L. Roemmele, Ulrike Werner-Zwanziger, René T. Boeré, Heikki M. Tuononen, Jason A. C. Clyburne, Jason D. Masuda|2018|Angew.Chem.,Int.Ed.|57|749|doi:10.1002/anie.201711031
CCDC 1057510: Experimental Crystal Structure Determination
Related Article: Ian S. Morgan, Akseli Mansikkamäki, Georgia A. Zissimou, Panayiotis A. Koutentis, Mathieu Rouzières, Rodolphe Clérac and Heikki M. Tuononen|2015|Chem.-Eur.J.|21|15843|doi:10.1002/chem.201501343
CCDC 2131016: Experimental Crystal Structure Determination
Related Article: Braulio M. Puerta Lombardi, Ethan R. Pezoulas, Roope A. Suvinen, Alexander Harrison, Zachary S. Dubrawski, Benjamin S. Gelfand, Heikki M. Tuononen, Roland Roesler|2022|Chem.Commun.|58|6482|doi:10.1039/D2CC01476A
CCDC 2065246: Experimental Crystal Structure Determination
Related Article: Joshua D. Queen, Sini Irvankoski, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2021|J.Am.Chem.Soc.|143|6351|doi:10.1021/jacs.1c02463
CCDC 1505087: Experimental Crystal Structure Determination
Related Article: Madison L. McCrea-Hendrick, ChristineA. Caputo, Jarno Linnera, Petra Vasko, CoryM. Weinstein, James C. Fettinger, Heikki M. Tuononen, and PhilipP. Power|2016|Organometallics|35|2759|doi:10.1021/acs.organomet.6b00519
CCDC 955302: Experimental Crystal Structure Determination
Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a
CCDC 1569577: Experimental Crystal Structure Determination
Related Article: Cameron M. E. Graham, Juuso Valjus, Taylor E. Pritchard, Paul D. Boyle, Heikki M. Tuononen, Paul J. Ragogna|2017|Inorg.Chem.|56|13500|doi:10.1021/acs.inorgchem.7b02217
CCDC 954559: Experimental Crystal Structure Determination
Related Article: Zachary D. Brown , Petra Vasko , Jeremy D. Erickson , James C. Fettinger , Heikki M. Tuononen , and Philip P. Power|2013|J.Am.Chem.Soc.|135|6257|doi:10.1021/ja4003553
CCDC 1035163: Experimental Crystal Structure Determination
Related Article: Felicitas Lips, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2014|Organometallics|33|6253|doi:10.1021/om500947x
CCDC 1937170: Experimental Crystal Structure Determination
Related Article: Matthew M. Morgan, Maryam Nazari, Thomas Pickl, J. Mikko Rautiainen, Heikki M. Tuononen, Warren E. Piers, Gregory C. Welch, Benjamin S. Gelfand|2019|Chem.Commun.|55|11095|doi:10.1039/C9CC05103A
CCDC 1575615: Experimental Crystal Structure Determination
Related Article: Matthew M. Morgan, Evan A. Patrick, J. Mikko Rautiainen, Heikki M. Tuononen, Warren E. Piers, Denis M. Spasyuk|2017|Organometallics|36|2541|doi:10.1021/acs.organomet.7b00051
CCDC 2118009: Experimental Crystal Structure Determination
Related Article: Joschua Helmer, Olli J. Pakkanen, Chris Gendy, Alexander Hepp, Heikki M. Tuononen, Felicitas Lips|2022|Chem.Commun.|58|3549|doi:10.1039/D2CC00298A
CCDC 2090130: Experimental Crystal Structure Determination
Related Article: Chris Gendy, J. Mikko Rautiainen, Aaron Mailman, Heikki M. Tuononen|2021|Chem.-Eur.J.|27|14405|doi:10.1002/chem.202102804
CCDC 868803: Experimental Crystal Structure Determination
Related Article: Jani Moilanen, Javier Borau-Garcia, Roland Roesler and Heikki M. Tuononen|2012|Chem.Commun.|48|8949|doi:10.1039/C2CC34051H
CCDC 1519808: Experimental Crystal Structure Determination
Related Article: Petra Vasko, Juha Hurmalainen, Akseli Mansikkamäki, Anssi Peuronen, Aaron Mailman, Heikki M. Tuononen|2017|Dalton Trans.|46|16004|doi:10.1039/C7DT03243A
CCDC 1414955: Experimental Crystal Structure Determination
Related Article: Petra Vasko, Virva Kinnunen, Jani O. Moilanen, Tracey L. Roemmele, René T. Boeré, Jari Konu, Heikki M. Tuononen|2015|Dalton Trans.|44|18247|doi:10.1039/C5DT02830B
CCDC 966081: Experimental Crystal Structure Determination
Related Article: Mikko M. Hänninen , Petriina Paturi, Heikki M. Tuononen , Reijo Sillanpää , and Ari Lehtonen|2013|Inorg.Chem.|52|5714|doi:10.1021/ic302355b
CCDC 1575617: Experimental Crystal Structure Determination
Related Article: Matthew M. Morgan, Evan A. Patrick, J. Mikko Rautiainen, Heikki M. Tuononen, Warren E. Piers, Denis M. Spasyuk|2017|Organometallics|36|2541|doi:10.1021/acs.organomet.7b00051
CCDC 955312: Experimental Crystal Structure Determination
Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a
CCDC 2023413: Experimental Crystal Structure Determination
Related Article: Braulio Michele Puerta Lombardi, Chris Gendy, Benjamin S. Gelfand, Guy M. Bernard, Roderick E. Wasylishen, Heikki M. Tuononen, Roland Roesler|2021|Angew.Chem.,Int.Ed.|60|7077|doi:10.1002/anie.202011301
CCDC 1861472: Experimental Crystal Structure Determination
Related Article: Chris Gendy, Akseli Mansikkamäki, Juuso Valjus, Joshua Heidebrecht, Paul Chuk-Yan Hui, Guy M. Bernard, Heikki M. Tuononen, Roderick E. Wasylishen, Vladimir K. Michaelis, Roland Roesler|2019|Angew.Chem.,Int.Ed.|58|154|doi:10.1002/anie.201809889
CCDC 1555898: Experimental Crystal Structure Determination
Related Article: Jade Pratt, Aimee M. Bryan, Michelle Faust, Jessica N. Boynton, Petra Vasko, Brian D. Rekken, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2018|Inorg.Chem.|57|6491|doi:10.1021/acs.inorgchem.8b00551
CCDC 1861474: Experimental Crystal Structure Determination
Related Article: Chris Gendy, Akseli Mansikkamäki, Juuso Valjus, Joshua Heidebrecht, Paul Chuk-Yan Hui, Guy M. Bernard, Heikki M. Tuononen, Roderick E. Wasylishen, Vladimir K. Michaelis, Roland Roesler|2019|Angew.Chem.,Int.Ed.|58|154|doi:10.1002/anie.201809889
CCDC 1426930: Experimental Crystal Structure Determination
Related Article: Gustavo Portalone, Jani O. Moilanen, Heikki M. Tuononen, Kari Rissanen|2016|Cryst.Growth Des.|16|2631|doi:10.1021/acs.cgd.5b01727
CCDC 912008: Experimental Crystal Structure Determination
Related Article: Adrian Y. Houghton , Virve A. Karttunen , Cheng Fan , Warren E. Piers , and Heikki M. Tuononen|2013|J.Am.Chem.Soc.|135|941|doi:10.1021/ja311842r
CCDC 1485220: Experimental Crystal Structure Determination
Related Article: Cameron M. E. Graham, Taylor E. Pritchard, Paul D. Boyle, Juuso Valjus, Heikki M. Tuononen, Paul J. Ragogna|2017|Angew.Chem.,Int.Ed.|56|6236|doi:10.1002/anie.201611196
CCDC 1486829: Experimental Crystal Structure Determination
Related Article: Ramalingam Thirumoorthi, Tristram Chivers, Susanna Häggman, Akseli Mansikkamäki, Ian S. Morgan, Heikki M. Tuononen, Manu Lahtinen, Jari Konu|2016|Dalton Trans.|45|12691|doi:10.1039/C6DT02565J
CCDC 2131007: Experimental Crystal Structure Determination
Related Article: Braulio M. Puerta Lombardi, Ethan R. Pezoulas, Roope A. Suvinen, Alexander Harrison, Zachary S. Dubrawski, Benjamin S. Gelfand, Heikki M. Tuononen, Roland Roesler|2022|Chem.Commun.|58|6482|doi:10.1039/D2CC01476A
CCDC 2131010: Experimental Crystal Structure Determination
Related Article: Braulio M. Puerta Lombardi, Ethan R. Pezoulas, Roope A. Suvinen, Alexander Harrison, Zachary S. Dubrawski, Benjamin S. Gelfand, Heikki M. Tuononen, Roland Roesler|2022|Chem.Commun.|58|6482|doi:10.1039/D2CC01476A
CCDC 1426936: Experimental Crystal Structure Determination
Related Article: Gustavo Portalone, Jani O. Moilanen, Heikki M. Tuononen, Kari Rissanen|2016|Cryst.Growth Des.|16|2631|doi:10.1021/acs.cgd.5b01727
CCDC 1861478: Experimental Crystal Structure Determination
Related Article: Chris Gendy, Akseli Mansikkamäki, Juuso Valjus, Joshua Heidebrecht, Paul Chuk-Yan Hui, Guy M. Bernard, Heikki M. Tuononen, Roderick E. Wasylishen, Vladimir K. Michaelis, Roland Roesler|2019|Angew.Chem.,Int.Ed.|58|154|doi:10.1002/anie.201809889
CCDC 955307: Experimental Crystal Structure Determination
Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a
CCDC 1549503: Experimental Crystal Structure Determination
Related Article: Brian M. Barry, R. Graeme Soper, Juha Hurmalainen, Akseli Mansikkamäki, Katherine N. Robertson, William L. McClennan, Alex J. Veinot, Tracey L. Roemmele, Ulrike Werner-Zwanziger, René T. Boeré, Heikki M. Tuononen, Jason A. C. Clyburne, Jason D. Masuda|2018|Angew.Chem.,Int.Ed.|57|749|doi:10.1002/anie.201711031
CCDC 955303: Experimental Crystal Structure Determination
Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a
CCDC 1555903: Experimental Crystal Structure Determination
Related Article: Jade Pratt, Aimee M. Bryan, Michelle Faust, Jessica N. Boynton, Petra Vasko, Brian D. Rekken, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2018|Inorg.Chem.|57|6491|doi:10.1021/acs.inorgchem.8b00551
CCDC 1057507: Experimental Crystal Structure Determination
Related Article: Ian S. Morgan, Akseli Mansikkamäki, Georgia A. Zissimou, Panayiotis A. Koutentis, Mathieu Rouzières, Rodolphe Clérac and Heikki M. Tuononen|2015|Chem.-Eur.J.|21|15843|doi:10.1002/chem.201501343
CCDC 1519806: Experimental Crystal Structure Determination
Related Article: Petra Vasko, Juha Hurmalainen, Akseli Mansikkamäki, Anssi Peuronen, Aaron Mailman, Heikki M. Tuononen|2017|Dalton Trans.|46|16004|doi:10.1039/C7DT03243A
CCDC 1863393: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416
CCDC 1427362: Experimental Crystal Structure Determination
Related Article: Felicitas Lips, James C. Fettinger, Akseli Mansikkamäki, Heikki M. Tuononen, and Philip P. Power|2014|J.Am.Chem.Soc.|136|634|doi:10.1021/ja411951y
CCDC 955310: Experimental Crystal Structure Determination
Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a
CCDC 1569578: Experimental Crystal Structure Determination
Related Article: Cameron M. E. Graham, Juuso Valjus, Taylor E. Pritchard, Paul D. Boyle, Heikki M. Tuononen, Paul J. Ragogna|2017|Inorg.Chem.|56|13500|doi:10.1021/acs.inorgchem.7b02217
CCDC 2181988: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Awatef Ayadi, Noora Svahn, Manu K. Lahtinen, Mathieu Rouzières, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman|2022|Cryst.Growth Des.|22|7110|doi:10.1021/acs.cgd.2c00795
CCDC 1485223: Experimental Crystal Structure Determination
Related Article: Cameron M. E. Graham, Taylor E. Pritchard, Paul D. Boyle, Juuso Valjus, Heikki M. Tuononen, Paul J. Ragogna|2017|Angew.Chem.,Int.Ed.|56|6236|doi:10.1002/anie.201611196
CCDC 1036823: Experimental Crystal Structure Determination
Related Article: Juha Hurmalainen, Michael A. Land, Katherine N. Robertson, Christopher J. Roberts, Ian S. Morgan, Heikki M. Tuononen and Jason A. C. Clyburne|2015|Angew.Chem.,Int.Ed.|54|7484|doi:10.1002/anie.201411654
CCDC 966080: Experimental Crystal Structure Determination
Related Article: Mikko M. Hänninen , Petriina Paturi, Heikki M. Tuononen , Reijo Sillanpää , and Ari Lehtonen|2013|Inorg.Chem.|52|5714|doi:10.1021/ic302355b
CCDC 955299: Experimental Crystal Structure Determination
Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a
CCDC 2022316: Experimental Crystal Structure Determination
Related Article: Kristian L. Mears, Cary R. Stennett, Elina K. Taskinen, Caroline E. Knapp, Claire J. Carmalt, Heikki M. Tuononen, Philip P. Power|2020|J.Am.Chem.Soc.|142|19874|doi:10.1021/jacs.0c10099
CCDC 1955684: Experimental Crystal Structure Determination
Related Article: Christos P. Constantinides, Daniel B. Lawson, Georgia A. Zissimou, Andrey A. Berezin, Aaron Mailman, Maria Manoli, Andreas Kourtellaris, Gregory M. Leitus, Rodolphe Clérac, Heikki M. Tuononen, Panayiotis A. Koutentis|2020|CrystEngComm|22|5453|doi:10.1039/D0CE00789G
CCDC 2090126: Experimental Crystal Structure Determination
Related Article: Chris Gendy, J. Mikko Rautiainen, Aaron Mailman, Heikki M. Tuononen|2021|Chem.-Eur.J.|27|14405|doi:10.1002/chem.202102804
CCDC 1424394: Experimental Crystal Structure Determination
Related Article: Ramalingam Thirumoorthi, Tristram Chivers, Susanna Häggman, Akseli Mansikkamäki, Ian S. Morgan, Heikki M. Tuononen, Manu Lahtinen, Jari Konu|2016|Dalton Trans.|45|12691|doi:10.1039/C6DT02565J
CCDC 2207551: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Awatef Ayadi, Noora Svahn, Manu K. Lahtinen, Mathieu Rouzières, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman|2022|Cryst.Growth Des.|22|7110|doi:10.1021/acs.cgd.2c00795
CCDC 2090120: Experimental Crystal Structure Determination
Related Article: Chris Gendy, J. Mikko Rautiainen, Aaron Mailman, Heikki M. Tuononen|2021|Chem.-Eur.J.|27|14405|doi:10.1002/chem.202102804
CCDC 1575612: Experimental Crystal Structure Determination
Related Article: Matthew M. Morgan, Evan A. Patrick, J. Mikko Rautiainen, Heikki M. Tuononen, Warren E. Piers, Denis M. Spasyuk|2017|Organometallics|36|2541|doi:10.1021/acs.organomet.7b00051
CCDC 2131013: Experimental Crystal Structure Determination
Related Article: Braulio M. Puerta Lombardi, Ethan R. Pezoulas, Roope A. Suvinen, Alexander Harrison, Zachary S. Dubrawski, Benjamin S. Gelfand, Heikki M. Tuononen, Roland Roesler|2022|Chem.Commun.|58|6482|doi:10.1039/D2CC01476A
CCDC 1575609: Experimental Crystal Structure Determination
Related Article: Matthew M. Morgan, Evan A. Patrick, J. Mikko Rautiainen, Heikki M. Tuononen, Warren E. Piers, Denis M. Spasyuk|2017|Organometallics|36|2541|doi:10.1021/acs.organomet.7b00051
CCDC 1536801: Experimental Crystal Structure Determination
Related Article: Petra Vasko, Juha Hurmalainen, Akseli Mansikkamäki, Anssi Peuronen, Aaron Mailman, Heikki M. Tuononen|2017|Dalton Trans.|46|16004|doi:10.1039/C7DT03243A
CCDC 1420621: Experimental Crystal Structure Determination
Related Article: Petra Vasko, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2016|Polyhedron|103|164|doi:10.1016/j.poly.2015.09.052
CCDC 1863397: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416
CCDC 1937169: Experimental Crystal Structure Determination
Related Article: Matthew M. Morgan, Maryam Nazari, Thomas Pickl, J. Mikko Rautiainen, Heikki M. Tuononen, Warren E. Piers, Gregory C. Welch, Benjamin S. Gelfand|2019|Chem.Commun.|55|11095|doi:10.1039/C9CC05103A
CCDC 2023414: Experimental Crystal Structure Determination
Related Article: Braulio Michele Puerta Lombardi, Chris Gendy, Benjamin S. Gelfand, Guy M. Bernard, Roderick E. Wasylishen, Heikki M. Tuononen, Roland Roesler|2021|Angew.Chem.,Int.Ed.|60|7077|doi:10.1002/anie.202011301
CCDC 2090123: Experimental Crystal Structure Determination
Related Article: Chris Gendy, J. Mikko Rautiainen, Aaron Mailman, Heikki M. Tuononen|2021|Chem.-Eur.J.|27|14405|doi:10.1002/chem.202102804
CCDC 956378: Experimental Crystal Structure Determination
Related Article: Adrian Y. Houghton, Virve A. Karttunen, Warren E. Piers, Heikki M. Tuononen|2014|Chem.Commun.|50|1295|doi:10.1039/C3CC48796B
CCDC 1057506: Experimental Crystal Structure Determination
Related Article: Ian S. Morgan, Akseli Mansikkamäki, Georgia A. Zissimou, Panayiotis A. Koutentis, Mathieu Rouzières, Rodolphe Clérac and Heikki M. Tuononen|2015|Chem.-Eur.J.|21|15843|doi:10.1002/chem.201501343
CCDC 2181980: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Awatef Ayadi, Noora Svahn, Manu K. Lahtinen, Mathieu Rouzières, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman|2022|Cryst.Growth Des.|22|7110|doi:10.1021/acs.cgd.2c00795
CCDC 1555901: Experimental Crystal Structure Determination
Related Article: Jade Pratt, Aimee M. Bryan, Michelle Faust, Jessica N. Boynton, Petra Vasko, Brian D. Rekken, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2018|Inorg.Chem.|57|6491|doi:10.1021/acs.inorgchem.8b00551
CCDC 2181989: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Awatef Ayadi, Noora Svahn, Manu K. Lahtinen, Mathieu Rouzières, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman|2022|Cryst.Growth Des.|22|7110|doi:10.1021/acs.cgd.2c00795
CCDC 2131014: Experimental Crystal Structure Determination
Related Article: Braulio M. Puerta Lombardi, Ethan R. Pezoulas, Roope A. Suvinen, Alexander Harrison, Zachary S. Dubrawski, Benjamin S. Gelfand, Heikki M. Tuononen, Roland Roesler|2022|Chem.Commun.|58|6482|doi:10.1039/D2CC01476A
CCDC 1519807: Experimental Crystal Structure Determination
Related Article: Petra Vasko, Juha Hurmalainen, Akseli Mansikkamäki, Anssi Peuronen, Aaron Mailman, Heikki M. Tuononen|2017|Dalton Trans.|46|16004|doi:10.1039/C7DT03243A
CCDC 1405504: Experimental Crystal Structure Determination
Related Article: Rudy M. Brown, Javier Borau Garcia, Juuso Valjus, Christopher J. Roberts, Heikki M. Tuononen, Masood Parvez, and Roland Roesler|2015|Angew.Chem.,Int.Ed.|54|6274|doi:10.1002/anie.201500453
CCDC 2131015: Experimental Crystal Structure Determination
Related Article: Braulio M. Puerta Lombardi, Ethan R. Pezoulas, Roope A. Suvinen, Alexander Harrison, Zachary S. Dubrawski, Benjamin S. Gelfand, Heikki M. Tuononen, Roland Roesler|2022|Chem.Commun.|58|6482|doi:10.1039/D2CC01476A
CCDC 2181977: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Awatef Ayadi, Noora Svahn, Manu K. Lahtinen, Mathieu Rouzières, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman|2022|Cryst.Growth Des.|22|7110|doi:10.1021/acs.cgd.2c00795
CCDC 2090124: Experimental Crystal Structure Determination
Related Article: Chris Gendy, J. Mikko Rautiainen, Aaron Mailman, Heikki M. Tuononen|2021|Chem.-Eur.J.|27|14405|doi:10.1002/chem.202102804
CCDC 1414954: Experimental Crystal Structure Determination
Related Article: Petra Vasko, Virva Kinnunen, Jani O. Moilanen, Tracey L. Roemmele, René T. Boeré, Jari Konu, Heikki M. Tuononen|2015|Dalton Trans.|44|18247|doi:10.1039/C5DT02830B
CCDC 2090129: Experimental Crystal Structure Determination
Related Article: Chris Gendy, J. Mikko Rautiainen, Aaron Mailman, Heikki M. Tuononen|2021|Chem.-Eur.J.|27|14405|doi:10.1002/chem.202102804
CCDC 2181986: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Awatef Ayadi, Noora Svahn, Manu K. Lahtinen, Mathieu Rouzières, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman|2022|Cryst.Growth Des.|22|7110|doi:10.1021/acs.cgd.2c00795
CCDC 954557: Experimental Crystal Structure Determination
Related Article: Zachary D. Brown , Petra Vasko , Jeremy D. Erickson , James C. Fettinger , Heikki M. Tuononen , and Philip P. Power|2013|J.Am.Chem.Soc.|135|6257|doi:10.1021/ja4003553
CCDC 1426932: Experimental Crystal Structure Determination
Related Article: Gustavo Portalone, Jani O. Moilanen, Heikki M. Tuononen, Kari Rissanen|2016|Cryst.Growth Des.|16|2631|doi:10.1021/acs.cgd.5b01727
CCDC 1575613: Experimental Crystal Structure Determination
Related Article: Matthew M. Morgan, Evan A. Patrick, J. Mikko Rautiainen, Heikki M. Tuononen, Warren E. Piers, Denis M. Spasyuk|2017|Organometallics|36|2541|doi:10.1021/acs.organomet.7b00051
CCDC 1569582: Experimental Crystal Structure Determination
Related Article: Cameron M. E. Graham, Juuso Valjus, Taylor E. Pritchard, Paul D. Boyle, Heikki M. Tuononen, Paul J. Ragogna|2017|Inorg.Chem.|56|13500|doi:10.1021/acs.inorgchem.7b02217
CCDC 1008275: Experimental Crystal Structure Determination
Related Article: Biswa Nath Ghosh, Filip Topić, Prasit Kumar Sahoo, Prasenjit Mal, Jarno Linnera, Elina Kalenius, Heikki M. Tuononen, Kari Rissanen|2015|Dalton Trans.|44|254|doi:10.1039/C4DT02728K
CCDC 2118008: Experimental Crystal Structure Determination
Related Article: Joschua Helmer, Olli J. Pakkanen, Chris Gendy, Alexander Hepp, Heikki M. Tuononen, Felicitas Lips|2022|Chem.Commun.|58|3549|doi:10.1039/D2CC00298A
CCDC 1863391: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Joanne W. L. Wong, Kristina Lekin, Abdeljalil Assoud, Craig M. Robertson, Manu Lahtinen, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman, Richard T. Oakley|2018|Inorg.Chem.|57|13901|doi:10.1021/acs.inorgchem.8b02416
CCDC 1505084: Experimental Crystal Structure Determination
Related Article: Madison L. McCrea-Hendrick, ChristineA. Caputo, Jarno Linnera, Petra Vasko, CoryM. Weinstein, James C. Fettinger, Heikki M. Tuononen, and PhilipP. Power|2016|Organometallics|35|2759|doi:10.1021/acs.organomet.6b00519
CCDC 1426931: Experimental Crystal Structure Determination
Related Article: Gustavo Portalone, Jani O. Moilanen, Heikki M. Tuononen, Kari Rissanen|2016|Cryst.Growth Des.|16|2631|doi:10.1021/acs.cgd.5b01727
CCDC 2131012: Experimental Crystal Structure Determination
Related Article: Braulio M. Puerta Lombardi, Ethan R. Pezoulas, Roope A. Suvinen, Alexander Harrison, Zachary S. Dubrawski, Benjamin S. Gelfand, Heikki M. Tuononen, Roland Roesler|2022|Chem.Commun.|58|6482|doi:10.1039/D2CC01476A
CCDC 1400651: Experimental Crystal Structure Determination
Related Article: Petra Vasko, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2016|Polyhedron|103|164|doi:10.1016/j.poly.2015.09.052
CCDC 2118010: Experimental Crystal Structure Determination
Related Article: Joschua Helmer, Olli J. Pakkanen, Chris Gendy, Alexander Hepp, Heikki M. Tuononen, Felicitas Lips|2022|Chem.Commun.|58|3549|doi:10.1039/D2CC00298A
CCDC 1555902: Experimental Crystal Structure Determination
Related Article: Jade Pratt, Aimee M. Bryan, Michelle Faust, Jessica N. Boynton, Petra Vasko, Brian D. Rekken, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2018|Inorg.Chem.|57|6491|doi:10.1021/acs.inorgchem.8b00551
CCDC 1569580: Experimental Crystal Structure Determination
Related Article: Cameron M. E. Graham, Juuso Valjus, Taylor E. Pritchard, Paul D. Boyle, Heikki M. Tuononen, Paul J. Ragogna|2017|Inorg.Chem.|56|13500|doi:10.1021/acs.inorgchem.7b02217
CCDC 956382: Experimental Crystal Structure Determination
Related Article: Adrian Y. Houghton, Virve A. Karttunen, Warren E. Piers, Heikki M. Tuononen|2014|Chem.Commun.|50|1295|doi:10.1039/C3CC48796B
CCDC 1401115: Experimental Crystal Structure Determination
Related Article: Michelle Faust, Aimee M. Bryan, Akseli Mansikkamäki, Petra Vasko, Marilyn M. Olmstead, Heikki M. Tuononen, Fernande Grandjean, Gary J. Long and Philip P. Power|2015|Angew.Chem.,Int.Ed.|54|12914|doi:10.1002/anie.201505518
CCDC 955301: Experimental Crystal Structure Determination
Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a
CCDC 1036416: Experimental Crystal Structure Determination
Related Article: Petra Vasko, Shuai Wang, Heikki M. Tuononen, Philip P. Power|2015|Angew.Chem.,Int.Ed.|54|3802|doi:10.1002/anie.201411595
CCDC 955311: Experimental Crystal Structure Determination
Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a
CCDC 1549498: Experimental Crystal Structure Determination
Related Article: Brian M. Barry, R. Graeme Soper, Juha Hurmalainen, Akseli Mansikkamäki, Katherine N. Robertson, William L. McClennan, Alex J. Veinot, Tracey L. Roemmele, Ulrike Werner-Zwanziger, René T. Boeré, Heikki M. Tuononen, Jason A. C. Clyburne, Jason D. Masuda|2018|Angew.Chem.,Int.Ed.|57|749|doi:10.1002/anie.201711031
CCDC 955305: Experimental Crystal Structure Determination
Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a
CCDC 929108: Experimental Crystal Structure Determination
Related Article: Sari M. Närhi, Johanna Kutuniva, Marja K. Lajunen, Manu K. Lahtinen, Heikki M. Tuononen, Antti J. Karttunen, Raija Oilunkaniemi, Risto S. Laitinen|2014|Spectrochim.Acta,Part A|117|728|doi:10.1016/j.saa.2013.09.063
CCDC 1485221: Experimental Crystal Structure Determination
Related Article: Cameron M. E. Graham, Taylor E. Pritchard, Paul D. Boyle, Juuso Valjus, Heikki M. Tuononen, Paul J. Ragogna|2017|Angew.Chem.,Int.Ed.|56|6236|doi:10.1002/anie.201611196
CCDC 1549504: Experimental Crystal Structure Determination
Related Article: Brian M. Barry, R. Graeme Soper, Juha Hurmalainen, Akseli Mansikkamäki, Katherine N. Robertson, William L. McClennan, Alex J. Veinot, Tracey L. Roemmele, Ulrike Werner-Zwanziger, René T. Boeré, Heikki M. Tuononen, Jason A. C. Clyburne, Jason D. Masuda|2018|Angew.Chem.,Int.Ed.|57|749|doi:10.1002/anie.201711031
CCDC 2065248: Experimental Crystal Structure Determination
Related Article: Joshua D. Queen, Sini Irvankoski, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2021|J.Am.Chem.Soc.|143|6351|doi:10.1021/jacs.1c02463
CCDC 2097024: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Awatef Ayadi, Manu K. Lahtinen, Itziar Oyarzabal, Sébastien Bonhommeau, Mathieu Rouzières, Corine Mathonière, Heikki M. Tuononen, Rodolphe Clérac, Aaron Mailman|2021|J.Am.Chem.Soc.|143|15912|doi:10.1021/jacs.1c07468
CCDC 2181974: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Awatef Ayadi, Noora Svahn, Manu K. Lahtinen, Mathieu Rouzières, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman|2022|Cryst.Growth Des.|22|7110|doi:10.1021/acs.cgd.2c00795
CCDC 955304: Experimental Crystal Structure Determination
Related Article: Brian D. Rekken , Thomas M. Brown , James C. Fettinger , Felicitas Lips , Heikki M. Tuononen , Rolfe H. Herber , and Philip P. Power|2013|J.Am.Chem.Soc.|135|10134|doi:10.1021/ja403802a
CCDC 929109: Experimental Crystal Structure Determination
Related Article: Sari M. Närhi, Johanna Kutuniva, Marja K. Lajunen, Manu K. Lahtinen, Heikki M. Tuononen, Antti J. Karttunen, Raija Oilunkaniemi, Risto S. Laitinen|2014|Spectrochim.Acta,Part A|117|728|doi:10.1016/j.saa.2013.09.063
CCDC 1563199: Experimental Crystal Structure Determination
Related Article: Ian S. Morgan, Akseli Mansikkamäki, Mathieu Rouzières, Rodolphe Clérac, Heikki M. Tuononen|2017|Dalton Trans.|46|12790|doi:10.1039/C7DT02766D
CCDC 2131008: Experimental Crystal Structure Determination
Related Article: Braulio M. Puerta Lombardi, Ethan R. Pezoulas, Roope A. Suvinen, Alexander Harrison, Zachary S. Dubrawski, Benjamin S. Gelfand, Heikki M. Tuononen, Roland Roesler|2022|Chem.Commun.|58|6482|doi:10.1039/D2CC01476A
CCDC 1555896: Experimental Crystal Structure Determination
Related Article: Jade Pratt, Aimee M. Bryan, Michelle Faust, Jessica N. Boynton, Petra Vasko, Brian D. Rekken, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2018|Inorg.Chem.|57|6491|doi:10.1021/acs.inorgchem.8b00551
CCDC 2182178: Experimental Crystal Structure Determination
Related Article: Anni I. Taponen, Awatef Ayadi, Noora Svahn, Manu K. Lahtinen, Mathieu Rouzières, Rodolphe Clérac, Heikki M. Tuononen, Aaron Mailman|2022|Cryst.Growth Des.|22|7110|doi:10.1021/acs.cgd.2c00795
CCDC 1057509: Experimental Crystal Structure Determination
Related Article: Ian S. Morgan, Akseli Mansikkamäki, Georgia A. Zissimou, Panayiotis A. Koutentis, Mathieu Rouzières, Rodolphe Clérac and Heikki M. Tuononen|2015|Chem.-Eur.J.|21|15843|doi:10.1002/chem.201501343
CCDC 2090121: Experimental Crystal Structure Determination
Related Article: Chris Gendy, J. Mikko Rautiainen, Aaron Mailman, Heikki M. Tuononen|2021|Chem.-Eur.J.|27|14405|doi:10.1002/chem.202102804
CCDC 1431124: Experimental Crystal Structure Determination
Related Article: Jeremy D. Erickson, Petra Vasko, Ryan D. Riparetti, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2015|Organometallics|34|5785|doi:10.1021/acs.organomet.5b00884
CCDC 1518783: Experimental Crystal Structure Determination
Related Article: Juha Hurmalainen, Akseli Mansikkamäki, Ian S. Morgan, Anssi Peuronen, Heikki M. Tuononen|2017|Dalton Trans.|46|1377|doi:10.1039/C6DT04504A
CCDC 1008274: Experimental Crystal Structure Determination
Related Article: Biswa Nath Ghosh, Filip Topić, Prasit Kumar Sahoo, Prasenjit Mal, Jarno Linnera, Elina Kalenius, Heikki M. Tuononen, Kari Rissanen|2015|Dalton Trans.|44|254|doi:10.1039/C4DT02728K