0000000001299461

AUTHOR

Margarita Bulatova

showing 20 related works from this author

Controlling the crystal growth of potassium iodide with a 1,1'-bis(pyridin-4-ylmethyl)-2,2'-biimidazole ligand (L) – formation of a linear [K4I4L4]n …

2018

The crystal growth of potassium iodide was controlled by using the neutral organic 1,1′-bis(pyridin-4-ylmethyl)-2,2′-biimidazole (L) ligand as a modifier. The selected modifier allows the preservation of original cubic [K4I4] units and their arrangement into a linear ligand-supported 1D chain. The supported [K4I4] cubes are only slightly distorted compared to the cubes found in pure KI salt. The N–K binding of the ligand to the KI salt, as well as weak I⋯H, N⋯H, and N⋯I interactions, stabilizes the structure to create a unique 1D polymer of neutral potassium iodide ionic salt inside the [K4I4L4]n complex.

saltsIonic bondingSalt (chemistry)chemistry.chemical_elementsuolat (yhdisteet)Crystal growth02 engineering and technology010402 general chemistryIodine01 natural sciencescrystalsGeneral Materials Sciencepolymeeritta116polymerschemistry.chemical_classificationLigandGeneral ChemistryPolymer021001 nanoscience & nanotechnologyCondensed Matter Physicskiteet0104 chemical sciencesCrystallographychemistry0210 nano-technologyCrystEngComm
researchProduct

Studies of Nature of Uncommon Bifurcated I–I···(I–M) Metal-Involving Noncovalent Interaction in Palladium(II) and Platinum(II) Isocyanide Cocrystals

2021

Two isostructural trans-[MI2(CNXyl)2]·I2 (M = Pd or Pt; CNXyl = 2,6-dimethylphenyl isocyanide) metallopolymeric cocrystals containing uncommon bifurcated iodine···(metal–iodide) contact were obtained. In addition to classical halogen bonding, single-crystal X-ray diffraction analysis revealed a rare type of metal-involved stabilizing contact in both cocrystals. The nature of the noncovalent contact was studied computationally (via DFT, electrostatic surface potential, electron localization function, quantum theory of atoms in molecules, and noncovalent interactions plot methods). Studies confirmed that the I···I halogen bond is the strongest noncovalent interaction in the systems, followed …

chemistry.chemical_classificationplatinaHalogen bondhalogeenit010405 organic chemistryChemistryIsocyanideAtoms in moleculeskompleksiyhdisteet010402 general chemistrypalladium01 natural sciencesCocrystalElectron localization function0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundCrystallographykemialliset sidoksetNucleophileNon-covalent interactionsPhysical and Theoretical ChemistryIsostructuralmetallit
researchProduct

Classics Meet Classics: Theoretical and Experimental Studies of Halogen Bonding in Adducts of Platinum(II) 1,5-Cyclooctadiene Halide Complexes with D…

2021

Complexes of PtX2COD (X = Cl, Br, I; COD = 1,5-cyclooctadiene) were cocrystallized with classical halogen-bond donors (CHI3, I2, and 1,4-diiodotetrafluorobenzene (FIB)), resulting in noncovalently ...

Halogen bond010405 organic chemistry15-CyclooctadieneHalidechemistry.chemical_elementGeneral Chemistry010402 general chemistryCondensed Matter PhysicsIodoform01 natural sciences3. Good health0104 chemical sciencesAdductchemistry.chemical_compoundchemistryPolymer chemistryGeneral Materials SciencePlatinumCrystal Growth & Design
researchProduct

Influence of Substituents in the Aromatic Ring on the Strength of Halogen Bonding in Iodobenzene Derivatives

2020

Halogen bonding properties of 3,4,5-triiodobenzoic acid (1, 2), 1,2,3-triiodobenzene (3), pentaiodobenzoic acid ethanol solvate (4), hexaiodobenzene (5a, 5b, 5c), 2,4-diiodoaniline (6), 4-iodoaniline (7), 2-iodoaniline (8), 2-iodophenol (9), 4-iodophenol (10), 3-iodophenol (11) and 2,4,6-triiodophenol (12) has been studied. The results suggested that substituents other than halogen in aromatic ring affect XB properties of iodine substituents in ortho-, meta- and para-positions. The effect depends on the electron-withdrawing/electron-donating properties of the substituent. Thus, electron-withdrawing substituents with negative mesomeric effect favor m-iodines to act as XB donors and o- and p-…

Halogen bond010405 organic chemistryIodobenzeneSubstituentGeneral ChemistryMesomeric effect010402 general chemistryCondensed Matter PhysicsRing (chemistry)01 natural sciencesMedicinal chemistryHexaiodobenzene0104 chemical scienceschemistry.chemical_compoundchemistryHalogenGeneral Materials ScienceCrystal Growth & Design
researchProduct

Synthesis and investigation of coordinative properties of biimidazole-derived ligands

2015

For this thesis a study of the coordination properties of biimidazole-based compounds was performed. The thesis is divided into two parts: literature part, where the chemistry and application of biimidazole and its derivatives are discussed, and experimental part, where the synthesis and coordination properties of biimidazole-based ligands are studied and discussed. The literature part contains a discussion of coordinative properties of biimidazole-derived ligands and a discussion of different types of weak interactions. Definition, nature and examples of hydrogen and different types of π-bonding were considered in detail. Due to chemical properties of biimidazole-derived compounds they hav…

biimidazolesupramolekulaarinen kemialigandit
researchProduct

Influence of substituents in aromatic ring on the strength of halogen bonding in iodobenzene derivatives

2020

Halogen bonding properties of 3,4,5-triiodobenzoic acid (1, 2), 1,2,3-triiodobenzene (3), pentaiodobenzoic acid ethanol solvate (4), hexaiodobenzene (5a, 5b, 5c), 2,4-diiodoaniline (6), 4-iodoaniline (7), 2-iodoaniline (8), 2-iodophenol (9), 4-iodophenol (10), 3-iodophenol (11) and 2,4,6-triiodophenol (12) has been studied. The results suggested that substituents other than halogen in aromatic ring affect XB properties of iodine substituents in ortho-, meta- and para-positions. The effect depends on the electron-withdrawing/electron-donating properties of the substituent. Thus, electron-withdrawing substituents with negative mesomeric effect favor m-iodines to act as XB donors and o- and p-…

kemialliset sidoksethalogeenit
researchProduct

CCDC 2054859: Experimental Crystal Structure Determination

2021

Related Article: Margarita Bulatova, Daniil M. Ivanov, J. Mikko Rautiainen, Mikhail A. Kinzhalov, Khai-Nghi Truong, Manu Lahtinen, Matti Haukka|2021|Inorg.Chem.|60|13200|doi:10.1021/acs.inorgchem.1c01591

Space GroupCrystallographyCrystal Systembis{[(26-dimethylphenyl)azanylidyne]methyl}-bis(iodo)-palladium iodineCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2011890: Experimental Crystal Structure Determination

2020

Related Article: Maria V. Chernysheva, Margarita Bulatova, Xin Ding, Matti Haukka|2020|Cryst.Growth Des.|20|7197|doi:10.1021/acs.cgd.0c00866

Space GroupCrystallographyCrystal System345-triiodobenzoic acidCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1588805: Experimental Crystal Structure Determination

2018

Related Article: Margarita Bulatova, Rajendhraprasad Tatikonda, Pipsa Hirva, Evgeny Bulatov, Elina Sievänen, Matti Haukka|2018|CrystEngComm|20|3631|doi:10.1039/C8CE00483H

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[(mu-11'-bis[(pyridin-4-yl)methyl]-1H1'H-22'-biimidazole)-(mu-iodo)-potassium]Experimental 3D Coordinates
researchProduct

CCDC 2031113: Experimental Crystal Structure Determination

2021

Related Article: Margarita Bulatova, Daniil M. Ivanov, Matti Haukka|2021|Cryst.Growth Des.|21|974|doi:10.1021/acs.cgd.0c01314

[cycloocta-15-diene]-di-iodo-platinum(ii) triiodomethaneSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2031119: Experimental Crystal Structure Determination

2021

Related Article: Margarita Bulatova, Daniil M. Ivanov, Matti Haukka|2021|Cryst.Growth Des.|21|974|doi:10.1021/acs.cgd.0c01314

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersdichloro-[cycloocta-15-diene]-platinum(ii) di-iodineExperimental 3D Coordinates
researchProduct

CCDC 2054860: Experimental Crystal Structure Determination

2021

Related Article: Margarita Bulatova, Daniil M. Ivanov, J. Mikko Rautiainen, Mikhail A. Kinzhalov, Khai-Nghi Truong, Manu Lahtinen, Matti Haukka|2021|Inorg.Chem.|60|13200|doi:10.1021/acs.inorgchem.1c01591

Space GroupCrystallographyCrystal SystemCrystal Structurebis{N-(26-dimethylphenyl)cyano}-bis(iodo)-platinumCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2031118: Experimental Crystal Structure Determination

2021

Related Article: Margarita Bulatova, Daniil M. Ivanov, Matti Haukka|2021|Cryst.Growth Des.|21|974|doi:10.1021/acs.cgd.0c01314

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatesdichloro-[cycloocta-15-diene]-platinum(ii) bis(1245-tetrafluoro-36-diiodobenzene)
researchProduct

CCDC 2031114: Experimental Crystal Structure Determination

2021

Related Article: Margarita Bulatova, Daniil M. Ivanov, Matti Haukka|2021|Cryst.Growth Des.|21|974|doi:10.1021/acs.cgd.0c01314

Space GroupCrystallographyCrystal System[cycloocta-15-diene]-di-iodo-platinum(ii) hemikis(di-iodine)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2054861: Experimental Crystal Structure Determination

2021

Related Article: Margarita Bulatova, Daniil M. Ivanov, J. Mikko Rautiainen, Mikhail A. Kinzhalov, Khai-Nghi Truong, Manu Lahtinen, Matti Haukka|2021|Inorg.Chem.|60|13200|doi:10.1021/acs.inorgchem.1c01591

Space GroupCrystallographyCrystal SystemCrystal Structurebis{N-(26-dimethylphenyl)cyano}-bis(iodo)-palladiumCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2031117: Experimental Crystal Structure Determination

2021

Related Article: Margarita Bulatova, Daniil M. Ivanov, Matti Haukka|2021|Cryst.Growth Des.|21|974|doi:10.1021/acs.cgd.0c01314

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersdibromo-[cycloocta-15-diene]-platinum(ii) bis(1245-tetrafluoro-36-diiodobenzene)Experimental 3D Coordinates
researchProduct

CCDC 2011891: Experimental Crystal Structure Determination

2020

Related Article: Maria V. Chernysheva, Margarita Bulatova, Xin Ding, Matti Haukka|2020|Cryst.Growth Des.|20|7197|doi:10.1021/acs.cgd.0c00866

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates345-triiodobenzoic acid ethanol solvate
researchProduct

CCDC 2031115: Experimental Crystal Structure Determination

2021

Related Article: Margarita Bulatova, Daniil M. Ivanov, Matti Haukka|2021|Cryst.Growth Des.|21|974|doi:10.1021/acs.cgd.0c01314

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates[cycloocta-15-diene]-di-iodo-platinum(ii) sesquikis(1245-tetrafluoro-36-diiodobenzene)
researchProduct

CCDC 2031116: Experimental Crystal Structure Determination

2021

Related Article: Margarita Bulatova, Daniil M. Ivanov, Matti Haukka|2021|Cryst.Growth Des.|21|974|doi:10.1021/acs.cgd.0c01314

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersdibromo-[cycloocta-15-diene]-platinum(ii) hemikis(di-iodine)Experimental 3D Coordinates
researchProduct

CCDC 2054862: Experimental Crystal Structure Determination

2021

Related Article: Margarita Bulatova, Daniil M. Ivanov, J. Mikko Rautiainen, Mikhail A. Kinzhalov, Khai-Nghi Truong, Manu Lahtinen, Matti Haukka|2021|Inorg.Chem.|60|13200|doi:10.1021/acs.inorgchem.1c01591

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis{N-(26-dimethylphenyl)cyano}-bis(iodo)-platinum di-iodineExperimental 3D Coordinates
researchProduct