0000000001299484

AUTHOR

Giulia Grancini

showing 7 related works from this author

High-Efficiency Perovskite Solar Cells using Molecularly-Engineered, Thiophene-Rich,Hole-Transporting Materials: Influence of Alkyl Chain Length on P…

2016

The synthesis and characterization of a series of novel small-molecule hole-transporting materials (HTMs) based on an anthra[1,2-b:4,3-b′:5,6-b′′:8,7-b′′′]tetrathiophene (ATT) core are reported. The new compounds follow an easy synthetic route and have no need of expensive purification steps. The novel HTMs were tested in perovskite solar cells (PSCs) and power conversion efficiencies (PCE) of up to 18.1 % under 1 sun irradiation were 2 measured. This value is comparable with the 17.8 % efficiency obtained using spiroOMeTAD as a reference compound. Similarly, a significant quenching of the Photoluminescence in the first nanosecond is observed, indicative of effective hole transfer.Additiona…

Química orgánica
researchProduct

Non-Planar and Flexible Hole-Transporting Materials from Bis-Xanthene and Bis-Thioxanthene Units for Perovskite Solar Cells

2019

Two new hole-transporting materials (HTMs), BX-OMeTAD and BTX-OMeTAD, based on xanthene and thioxanthene units, respectively, and bearing p-methoxydiphenylamine peripheral groups, are presented for their use in perovskite solar cells (PSCs). The novelty of the newly designed molecules relies on the use of a single carbon-carbon bond ‘C−C’ as a linker between the two functionalized heterocycles, which increases the flexibility of the molecule compared with the more rigid structure of the widely used HTM spiro-OMeTAD. The new HTMs display a limited absorbance in the visible region, due to the lack of conjugation between the two molecular halves, and the chemical design used has a remarkably i…

XantheneOrganic ChemistryEnergy conversion efficiencyThioxantheneBiochemistryCombinatorial chemistryCatalysisInorganic ChemistryAbsorbancechemistry.chemical_compoundPlanarchemistryDrug DiscoveryMoleculePhysical and Theoretical ChemistryLinkerPerovskite (structure)
researchProduct

Molecular Engineering of Iridium Blue Emitters Using Aryl N‐Heterocyclic Carbene Ligands

2016

The synthesis of a new series of neutral bis[2-(2,4-difluorophen-2-yl)pyridine][1-(2-aryl)-3-methylimidazol-2-ylidene]iridium(III) complexes is reported. Each complex has been characterized by NMR spectroscopy, UV/Vis spectrophotometry, and cyclic voltammetry, and the photophysical properties examined in depth. Furthermore, two of the complexes have been characterized by single-crystal X-ray diffraction analysis. By systematically modifying the cyclometalating aryl group on the N-heterocyclic carbene (NHC) ligand from 2,4-dimethoxyphenyl to 6-methoxy-2-methyl-3-pyridyl, the energy levels of the Ir complexes were modified to produce new blue emitters with increased HOMO and triplet-state ene…

LigandArylchemistry.chemical_element02 engineering and technologyNuclear magnetic resonance spectroscopy010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistry01 natural sciences0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundchemistryPyridineOLEDIridiumCyclic voltammetry0210 nano-technologyCarbeneEuropean Journal of Inorganic Chemistry
researchProduct

Saddle-like, π-conjugated, cyclooctatetrathiophene-based, hole-transporting material for perovskite solar cells

2019

A flexible, saddle-like, π-conjugated skeleton composed of four fused thiophene rings forming a cyclooctatetrathiophene (CoTh) with four triphenylamines (CoTh-TTPA) is presented as a hole-transporting material (HTM) for perovskite solar cells. The new HTM shows a bright red color stemming from a direct conjugation between the TPA groups and the central CoTh scaffold. This results in a charge transfer band due to the combination of the weak acceptor moiety, the CoTh unit, and the electron-donating p-methoxytriphenylamine groups. CoTh-TTPA exhibits a suitable highest-occupied molecular orbital (HOMO) level in relation to the valence band edge of the perovskite, which ensures efficient hole ex…

Materials sciencePhotoluminescence02 engineering and technologyGeneral ChemistryConductivityConjugated system010402 general chemistry021001 nanoscience & nanotechnology7. Clean energy01 natural sciencesAcceptor0104 chemical scienceschemistry.chemical_compoundCrystallographychemistryMaterials ChemistryThiopheneMoietyMolecular orbital0210 nano-technologyPerovskite (structure)
researchProduct

High‐Efficiency Perovskite Solar Cells Using Molecularly Engineered, Thiophene‐Rich, Hole‐Transporting Materials: Influence of Alkyl Chain Length on …

2016

The synthesis and characterization of a series of novel small-molecule hole-transporting materials (HTMs) based on an anthra[1,2-b:4,3-b′:5,6-b′′:8,7-b′′′]tetrathiophene (ATT) core are reported. The new compounds follow an easy synthetic route and have no need of expensive purification steps. The novel HTMs are tested in perovskite solar cells and power conversion efficiencies (PCE) of up to 18.1% under 1 sun irradiation are measured. This value is comparable with the 17.8% efficiency obtained using 2,2′,7,7′-tetrakis(N,N-di-p-methoxyphenylamine)-9,9′-spirobifluorene as a reference compound. Similarly, a significant quenching of the photoluminescence in the first nanosecond is observed, ind…

chemistry.chemical_classificationPhotoluminescenceQuenching (fluorescence)Materials scienceRenewable Energy Sustainability and the EnvironmentEnergy conversion efficiency02 engineering and technologyConductivity010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences7. Clean energy0104 chemical scienceschemistry.chemical_compoundChemical engineeringchemistryThiopheneOrganic chemistryGeneral Materials ScienceSolubility0210 nano-technologyAlkylPerovskite (structure)Advanced Energy Materials
researchProduct

CCDC 1445197: Experimental Crystal Structure Determination

2016

Related Article: Sadig Aghazada, Aron J. Huckaba, Antonio Pertegas, Azin Babaei, Giulia Grancini, Iwan Zimmermann, Henk Bolink and Mohammad Khaja Nazeeruddin|2016|Eur.J.Inorg.Chem.||5089|doi:10.1002/ejic.201600971

Space GroupCrystallographyCrystal SystemCrystal Structure(2-methyl-6-methoxy-3-(3-methylimidazol-1-yl-2-ylidene)pyridin-4-yl)-bis(35-difluoro-2-(2-pyridyl)phenyl)-iridiumCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1445196: Experimental Crystal Structure Determination

2016

Related Article: Sadig Aghazada, Aron J. Huckaba, Antonio Pertegas, Azin Babaei, Giulia Grancini, Iwan Zimmermann, Henk Bolink and Mohammad Khaja Nazeeruddin|2016|Eur.J.Inorg.Chem.||5089|doi:10.1002/ejic.201600971

Space GroupCrystallographyCrystal SystemCrystal Structure(26-dimethoxy-3-(3-methylimidazol-1-yl-2-ylidene)pyridin-4-yl)-bis(35-difluoro-2-(2-pyridyl)phenyl)-iridiumCell ParametersExperimental 3D Coordinates
researchProduct