0000000001299495

AUTHOR

Manickavachagam Muruganandham

Synthesis, NMR spectral and single crystal X-ray structural studies on Ni(II) dithiocarbamates. Fabrication of nickel sulfide nanospheres by the solvothermal method

Abstract Three dithiocarbamatonickel(II) complexes, [Ni(bzbudtc)2] (1), [Ni(bzbudtc)(PPh3)(NCS)] (2) and [Ni(bzbudtc)(PPh3)(CN)] (3) (where, bzbudtc = the N-benzyl-N-butyldithiocarbamato anion and PPh3 = triphenylphosphine), were prepared. All three complexes were analyzed by UV–Vis, IR and NMR (1H, 13C and 31P) spectra. The 13C NMR spectra of complexes 1–3 show the most crucial thioureide signal at around 200 ppm. A significant deshielding observed for the 31P signals in 2 and 3 reveals the effective bonding of phosphorus to the metal center. Single crystal X-ray analysis of crystals of 1–3 show that all the described complexes exhibit a distorted square planar coordination geometry in the…

research product

Phase selective synthesis of ZnS nanoparticles from structurally new dithiocarbamate precursor

Abstract A phase selective solvothermal synthesis of ZnS (wurzite) nanoparticles with a flower-like morphology using a dithiocarbamate precursor, [Zn(4-dpmpzdtc)2(dpmpz)] (1) (where, dpmpz=(diphenylmethyl)piperazine), is described. The nanoparticles were identified as ZnS (wurzite) with the particle size of about 3 to 10 nm by scanning and transmission electron microscopy as well as powder X-ray diffraction (XRD). In addition, the precursor complex 1 was characterized using single crystal X-ray diffraction.

research product

Synthesis and structural studies on Ni(II) dithiocarbamates : Exploring intramolecular Ni···H-C interactions

Five new Ni(II) dithiocarbamates with NiS4, NiS2PN and NiS2PCl coordination spheres, viz. [Ni(bupmbzdtc)2] (1), [Ni(bupmbzdtc)(PPh3)(NCS)] (2), [Ni(bupmbzdtc)(PPh3)Cl] (3), [Ni(4-dpmpzdtc)(PPh3)Cl] (4) and [Ni(pbbzbudtc)(PPh3)(NCS)] (5), where bupmbzdtc = N-butyl(p-methylbenzyl)dithiocarbamato anion, 4-dpmpzdtc = 4-(diphenylmethyl)piperazinecarbodithioato anion, pbbzbudtc = N-(p-bromobenzyl)butyl-dithiocarbamato anion and PPh3 = triphenylphosphine, were synthesized and characterized by UV, IR, NMR and single crystal X-ray diffraction methods. Spectral results suggest a square planar geometry around the Ni(II) metal center for all the synthesized complexes. Single crystal X-ray structural an…

research product

Synthesis of self-assembled mesoporous 3D In2O3 hierarchical micro flowers composed of nanosheets and their electrochemical properties

This report describes the methodology for the fabrication of mesoporous In2O3 microflowers by hydrothermal and calcination procedures in which In(OH)3/In2S3 acts as an intermediate. Both In2O3 and its precursor were analyzed with scanning electron microscopy, energy dispersive X-ray spectrophotometry, transmission electron microscopy and powder X-ray diffraction. BET surface area, pore size and pore volume analyses were also carried out. Electron microscopy images clearly evidence the self-assembly of 2D nanosheets into the micro flower structure. The mechanism of self-assembly and calcination is reported. Electrochemical properties of the synthesized In2O3 micro flowers were studied. peerR…

research product

Synthesis, NMR spectral and structural studies on mixed ligand complexes of Pd(II) dithiocarbamates: First structural report on palladium(II) dithiocarbamate with SCN-ligand

Abstract Three new mixed ligand complexes of palladium(II) dithiocarbamates; [Pd(4-dpmpzdtc)(PPh3)(SCN)] (1), [Pd(4-dpmpzdtc)(PPh3)Cl] (2) and [Pd(bzbudtc)(PPh3)Cl] (3), (where, 4-dpmpzdtc = 4-(diphenylmethyl)piperazinecarbodithioato anion, bzbudtc = N-benzyl-N-butyldithiocarbamato anion and PPh3 = triphenylphosphine) have been synthesized from their respective parent dithiocarbamates by ligand exchange reactions and characterized by IR and NMR (1H, 13C and 31P) spectroscopy. IR and NMR spectral data support the isobidentate coordination of the dithiocarbamate ligands in all complexes (1–3) in solid and in solution, respectively. Single crystal diffraction analysis of complexes 1–3 evidence…

research product

Spectral and structural studies on Ni(II) dithiocarbamates: Nickel sulfide nanoparticles from a dithiocarbamate precursor

Abstract Three new planar Ni(II) dithiocarbamate complexes; [Ni(4-dpmpzdtc)2] (1), [Ni(4-dpmpzdtc)(PPh3)(NCS)] (2) and [Ni(bupcbzdtc)(PPh3)(NCS)] (3) (where, 4-dpmpzdtc = 4-(diphenylmethyl)piperazinecarbodithioato anion, bupcbzdtc = N-butyl-N-(4-chlorobenzyl))dithiocarbamato anion and PPh3 = triphenylphosphine) with “NiS4” and “NiS2PN” chromophore units were synthesized and characterized by single crystal X-ray structural analysis as well as UV–Vis, IR and NMR (1H, 13C and 31P) spectroscopy. For 2, 1H–1H COSY spectrum was also recorded. Single crystal X-ray structural analysis of 1–3, reveals a slightly distorted square planar geometry in all three complexes wherein the steric and electroni…

research product

Facile fabrication of flower like self-assembled mesoporous hierarchical microarchitectures of In(OH)3 and In2O3: In(OH)3 micro flowers with electron beam sensitive thin petals

Abstract A template and capping-reagent free facile fabrication method for mesoporous hierarchical microarchitectures of flower-like In(OH) 3 particles under benign hydrothermal conditions is reported. Calcination of In(OH) 3 to In 2 O 3 with the retention of morphology is also described. Both In(OH) 3 and In 2 O 3 microstructures were analyzed with SEM, EDX, TEM and powder X-ray diffraction. The crystal sizes for In(OH) 3 and In 2 O 3 were calculated using the Scherrer equation. In In(OH) 3 the thin flakes at the periphery of micro flowers were electron beam sensitive. The mechanism of self-assembly process was analyzed as well.

research product

Synthesis of self-assembled α-GaOOH microrods and 3D hierarchical architectures with flower like morphology and their conversion to α-Ga2O3

Abstract This report reveals the methodology for the fabrication of α-GaOOH micro rods and micro flowers from gallium nitrate with two different complexing agents. α-GaOOH self-assembled 3D hierarchical architecture, comprising of nanorods and nanoribbbons with a flower like morphology, is fabricated under benign hydrothermal conditions. Calcination of α-GaOOH results in formation of α-Ga 2 O 3 with the retention of morphology. Both gallium oxyhydroxide and gallium oxide microstructures were analyzed with SEM, EDX, TEM and powder X-ray diffraction. α-Ga 2 O 3 micro flowers are furnished with nanorods having ordered diamond like cross section with a diagonal length proportion of 2:1. The hyd…

research product

Synthesis of self-assembled mesoporous 3D In2O3 hierarchical micro flowers composed of nanosheets and their electrochemical properties

This report describes the methodology for the fabrication of mesoporous In2O3 microflowers by hydrothermal and calcination procedures in which In(OH)3/In2S3 acts as an intermediate. Both In2O3 and its precursor were analyzed with scanning electron microscopy, energy dispersive X-ray spectrophotometry, transmission electron microscopy and powder X-ray diffraction. BET surface area, pore size and pore volume analyses were also carried out. Electron microscopy images clearly evidence the self-assembly of 2D nanosheets into the micro flower structure. The mechanism of self-assembly and calcination is reported. Electrochemical properties of the synthesized In2O3 micro flowers were studied.

research product

CCDC 1429013: Experimental Crystal Structure Determination

Related Article: Balasubramaniam Arul Prakasam, Anssi Peuronen, Manu Lahtinen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpää|2017|Polyhedron|123|453|doi:10.1016/j.poly.2016.11.027

research product

CCDC 990215: Experimental Crystal Structure Determination

Related Article: Balasubramaniam Arul Prakasam, Manu Lahtinen, Anssi Peuronen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpää|2015|Inorg.Chim.Acta|425|239|doi:10.1016/j.ica.2014.09.016

research product

CCDC 1007104: Experimental Crystal Structure Determination

Related Article: Balasubramaniam Arul Prakasam, Manu Lahtinen, Anssi Peuronen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpää|2015|Inorg.Chim.Acta|425|239|doi:10.1016/j.ica.2014.09.016

research product

CCDC 996586: Experimental Crystal Structure Determination

Related Article: Balasubramaniam Arul Prakasam, Manu Lahtinen, Anssi Peuronen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpaa|2014|Polyhedron|81|588|doi:10.1016/j.poly.2014.06.059

research product

CCDC 990214: Experimental Crystal Structure Determination

Related Article: Balasubramaniam Arul Prakasam, Manu Lahtinen, Anssi Peuronen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpää|2015|Inorg.Chim.Acta|425|239|doi:10.1016/j.ica.2014.09.016

research product

CCDC 996587: Experimental Crystal Structure Determination

Related Article: Balasubramaniam Arul Prakasam, Manu Lahtinen, Anssi Peuronen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpaa|2014|Polyhedron|81|588|doi:10.1016/j.poly.2014.06.059

research product

CCDC 1027704: Experimental Crystal Structure Determination

Related Article: Balasubramaniam Arul Prakasam, Manu Lahtinen, Anssi Peuronen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpää|2016|J.Mol.Struct.|1108|195|doi:10.1016/j.molstruc.2015.11.076

research product

CCDC 996588: Experimental Crystal Structure Determination

Related Article: Balasubramaniam Arul Prakasam, Manu Lahtinen, Anssi Peuronen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpaa|2014|Polyhedron|81|588|doi:10.1016/j.poly.2014.06.059

research product

CCDC 1429012: Experimental Crystal Structure Determination

Related Article: Balasubramaniam Arul Prakasam, Anssi Peuronen, Manu Lahtinen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpää|2017|Polyhedron|123|453|doi:10.1016/j.poly.2016.11.027

research product

CCDC 1429016: Experimental Crystal Structure Determination

Related Article: Balasubramaniam Arul Prakasam, Anssi Peuronen, Manu Lahtinen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpää|2017|Polyhedron|123|453|doi:10.1016/j.poly.2016.11.027

research product

CCDC 1027705: Experimental Crystal Structure Determination

Related Article: Balasubramaniam Arul Prakasam, Manu Lahtinen, Anssi Peuronen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpää|2016|J.Mol.Struct.|1108|195|doi:10.1016/j.molstruc.2015.11.076

research product

CCDC 1429014: Experimental Crystal Structure Determination

Related Article: Balasubramaniam Arul Prakasam, Anssi Peuronen, Manu Lahtinen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpää|2017|Polyhedron|123|453|doi:10.1016/j.poly.2016.11.027

research product

CCDC 1027703: Experimental Crystal Structure Determination

Related Article: Balasubramaniam Arul Prakasam, Manu Lahtinen, Anssi Peuronen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpää|2016|J.Mol.Struct.|1108|195|doi:10.1016/j.molstruc.2015.11.076

research product

CCDC 1429015: Experimental Crystal Structure Determination

Related Article: Balasubramaniam Arul Prakasam, Anssi Peuronen, Manu Lahtinen, Manickavachagam Muruganandham, Erkki Kolehmainen, Esa Haapaniemi, Mika Sillanpää|2017|Polyhedron|123|453|doi:10.1016/j.poly.2016.11.027

research product