0000000001299600

AUTHOR

Catarina M. Marinho

showing 3 related works from this author

The σ B -dependent regulatory sRNA Rli47 represses isoleucine biosynthesis in Listeria monocytogenes through a direct interaction with the ilvA trans…

2019

International audience; The facultative intracellular pathogen Listeria monocytogenes can persist and grow in a diverse range of environmental conditions, both outside and within its mammalian host. The alternative sigma factor Sigma B (sigma(B)) plays an important role in this adaptability and is critical for the transition into the host. While some of the functions of the sigma(B) regulon in facilitating this transition are understood the role of sigma(B)-dependent small regulatory RNAs (sRNAs) remain poorly characterized. In this study, we focused on elucidating the function of Rli47, a sigma(B)-dependent sRNA that is highly induced in the intestine and in macrophages. Using a combinatio…

[SDV]Life Sciences [q-bio]Biologymedicine.disease_causeRli47Microbiology03 medical and health sciences0302 clinical medicineListeria monocytogenesmedicineMolecular BiologyPathogen030304 developmental biologyThreonine deaminase0303 health sciencesIntracellular parasitefungifood and beveragesCell BiologyIsoleucine biosynthesisIsoleucine biosynthesisListeria monocytogenesilvA030220 oncology & carcinogenesisTransfer RNASigma BsRNAhuman activities
researchProduct

Investigation of the roles of AgrA and σB regulators in Listeria monocytogenes adaptation to roots and soil

2020

ABSTRACT Little is known about the regulatory mechanisms that ensure the survival of the food-borne bacterial pathogen Listeria monocytogenes in the telluric environment and on roots. Earlier studies have suggested a regulatory overlap between the Agr cell–cell communication system and the general stress response regulator σB. Here, we investigated the contribution of these two systems to root colonisation and survival in sterilised and biotic soil. The ability to colonise the roots of the grass Festuca arundinacea was significantly compromised in the double mutant (∆agrA∆sigB). In sterile soil at 25°C, a significant defect was observed in the double mutant, suggesting some synergy between …

MutantPopulationSoil survivalRoots colonizationSigma Factor[SDV.SA.SDS]Life Sciences [q-bio]/Agricultural sciences/Soil studymedicine.disease_causeMicrobiologyPlant RootsAgrA σBMicrobiology03 medical and health sciencesListeria monocytogenesBacterial Proteinstranscription regulatorsGeneticsmedicineeducationMolecular BiologyGenePathogenSoil Microbiology030304 developmental biology2. Zero hunger0303 health scienceseducation.field_of_studybiology030306 microbiology15. Life on landbiology.organism_classificationAdaptation PhysiologicalListeria monocytogenesColonisation[SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology13. Climate actionAdaptationFestuca arundinacea
researchProduct

The σB-dependent regulatory sRNA Rli47 represses isoleucine biosynthesis in Listeria monocytogenes through a direct interaction with the ilvA transcr…

2019

The facultative intracellular pathogen Listeria monocytogenes can persist and grow in a diverse range of environmental conditions, both outside and within its mammalian host. The alternative sigma factor Sigma B (σB) plays an important role in this adaptability and is critical for the transition into the host. While some of the functions of the σB regulon in facilitating this transition are understood the role of σB-dependent small regulatory RNAs (sRNAs) remain poorly characterized. In this study, we focused on elucidating the function of Rli47, a σB-dependent sRNA that is highly induced in the intestine and in macrophages. Using a combination of in silico and in vivo approaches, a binding…

researchProduct