0000000001299882
AUTHOR
Michael Knorr
Regioselective Synthesis of Mono- and Dispiropyrazoline Derivatives via 1,3-dipolar Cycloaddition with Nitrilimines
The 1,3-dipolar cycloaddition reaction of (E,E)-1,3-bis(arylidene)indan-2-one with diarylnitrilimines, generated in situ via dehydrohalogenation of the corresponding hydrazonoyl chlorides , affords predominantly monospiropyrazolines and as a mixture of diastereoisomers. Also dispiropyrazolines are formed in moderate yields. The structure and stereochemistry of cycloadducts were confirmed by 1H and 13C-NMR spectroscopy, elemental analyses data, and single-crystal X-ray diffraction studies of and .
Synthesis of highly substituted spiropyrrolidines via 1, 3-dipolar cycloaddition reaction of N-metalated azomethine ylides. A new access to spiropyrroline derivatives
1,3-dipolar cycloaddition of (E)-arylidene-(2H)-indanones 1 (Ar = Ph, p-MeC6H4, p-MeOC6H4, p-ClC6H4) and (E)-2-arylidene-(2H)-tetralones 2 (Ar = Ph, p-MeC6H4, p-MeOC6H4, p-ClC6H4) to N-metalated azomethine ylides 3 generated from methyl N-arylideneglycinate in the presence of silver acetate produces in good yields novel spiro[3,5-(diaryl)-2-carbomethoxypyrrolidine-4:2’-indanones] 4 and spiro[3,5-(diaryl)-2-carbomethoxypyrrolidine-4:2’-tetral-1-ones] 5. The cycloaddition proceeds in regio- and stereoselective manner (100%) at room temperature to afford respectively the syn-endo cycloadducts 4 and 5 via metallo-azomethine ylides. The regio- and stereochemistry of the spiranic adducts has been…
Reactivity of CuI and CuBr toward Et2S: a reinvestigation on the self-assembly of luminescent copper(I) coordination polymers.
CuI reacts with SEt(2) in hexane to afford the known strongly luminescent 1D coordination polymer [(Et(2)S)(3){Cu(4)(mu(3)-I)(4)}](n) (1). Its X-ray structure has been redetermined at 115, 235, and 275 K in order to address the behavior of the cluster-centered emission and is built upon Cu(4)(mu(3)-I)(4) cubane-like clusters as secondary building units (SBUs), which are interconnected via bridging SEt(2) ligands. However, we could not reproduce the preparation of a coordination polymer with composition [(Et(2)S)(3){Cu(4)(mu(3)-Br)(4)}](n) as reported in Inorg. Chem. 1975, 14, 1667. In contrast, the autoassembly reaction of SEt(2) with CuBr results in the formation of a novel 1D coordination…
Effect of t-BuS vs. n-BuS on the topology, Cu⋯Cu distances and luminescence properties of 2D Cu4I4/RS(CH2)4SR metal–organic frameworks
CuI reacts with RS(CH2)4SR (R = n-Bu (L1); t-Bu (L2)) to afford the 2D coordination polymers [Cu4I4{μ-RS(CH2)4SR}2]n (R = n-Bu (1); t-Bu (2)). Their grid networks exhibit nodal Cu4(μ3-I)4 clusters interconnected by dithioethers with mean Cu⋯Cu distances of 2.7265(10) and 2.911(2) A for 1 and 2, respectively. This difference translates in a blue shift of the solid state emission bands and a decrease in emission lifetimes when trading R = n-Bu to the bulky t-Bu.
Bis(4-methylthio)phenylthiomethane as assembling ligand for the construction of Cu(I) and Hg(II) coordination polymers. Crystal structures and topological (AIM) analysis of the bonding
International audience; The novel 1D coordination polymer (CP) [{Cu(mu(2)-Br)(2)Cu}(mu-L2)(2)] CP2 has been obtained by reaction of the tetrakisthioether p-MeSC6H4SCH2SC6H4SMe-p (L2) with CuBr in a 1: 2 metal-to ligand ratio. In contrast to the previously described CP [{Cu(mu(2)-Br)(2)Cu}(mu-L1)(2)] CP1 obtained by reaction of the tetrakisthioether p-MeOC6H4SCH2SC6H4OMe-p (L1) with CuBr, the two independent extended 1D ribbons contain bent Cu(mu(2)-Br)(2)Cu units of the butterfly-type with short Cu center dot center dot center dot Cu separations of 2.679(1) and 2.613(1) angstrom. In contrast to the common planar rhomboid Cu(mu(2)-Br)(2)Cu cluster, this butterfly-shaped geometry of the core …
Copper(I) Halides (X = Br, I) Coordinated to Bis(arylthio)methane Ligands: Aryl Substitution and Halide Effects on the Dimensionality, Cluster Size and Luminescence Properties of the Coordination Polymers
Bis(phenylthio)methane (L1) reacts with CuI to yield the 1D-coordination polymer [{Cu4(μ3-I)4}(μ-L1)2]n (1) bearing cubane Cu4I4 clusters as connecting nodes. The crystal structures at 115, 155, 195, and 235 K provided evidence for a phase transition changing from the monoclinic space group C2/c to P21/c. The self-assembly process of CuI with bis(p-tolylthio)methane (L2), bis(4-methoxyphenylthio)methane (L3), and bis(4-bromo-phenylthio)methane (L4) affords the 1D-coordination polymers [{Cu4(μ3-I)4}(μ-Lx)2]n (x = 2, 3, or 4). Compounds 2 and 4 are isostructural with C2/c low temperature polymorph of 1, whereas the inversion centers and 2-fold axes are lost in 3 (space group Cc). The use of b…
Synthesis of Isoxazole and 1,2,3-Triazole Isoindole Derivatives via Silver- and Copper-Catalyzed 1,3-Dipolar Cycloaddition Reaction.
International audience; The CuI-or Ag 2 CO 3-catalyzed [3+2] cycloaddition of propargyl-substituted dihydroisoindolin-1-one (3) with arylnitrile oxides 1a-d (Ar = Ph, p-MeC 6 H 4 , p-MeOC 6 H 4 , p-ClC 6 H 4) produces in good yields novel 3,5-disubstituted isoxazoles 4 of the ethyl-2-benzyl-3-oxo-1-((3-arylisoxazol-5yl)methyl)-2,3-dihydro-1H-isoindole-1-carboxylate type. With aryl azides 2a-d (Ar = Ph, p-MeC 6 H 4 , p-OMeC 6 H 4 , p-ClC 6 H 4), a series of 1,4-disubstituted 1,2,3-triazoles 6 (ethyl-2-benzyl-3-oxo-1-((1-aryl-1H-1,2,3-triazol-4-yl)methyl)-2,3-dihydro-1H-isoindole-1-carboxylates) was obtained. The reactions proceed in a regioselective manner affording exclusively racemic adduc…
Reinvestigation of the Pd-catalysed bis(silylation) of alkynes with 1,1,2,2-tetramethyl-1,2-bis(phenylthiomethyl)disilane: Unexpected formation of the eight-membered siloxane-chelate complex cis-[PdCl2{(PhSCH2SiMe2)2O}].
International audience; The bis(silylated) alkenes Z-(PhSCH2)Me2SiC(H)=C(Fc)SiMe2(CH2SPh) (2) and Z-(PhSCH2)Me2SiC(H)=C(bipheny)SiMe2(CH2SPh) (3) have been prepared by Pd-catalysed double silylation of ethynylferrocene and 4-ethynyl-1,1'-biphenyl in the presence of 1,1,2,2-tetramethyl-1,2-bis(phenylthiomethyl)disilane (1). A reinvestigation on the interaction of 1 with [PdCl2(PhCN)2] in technical-grade CH2Cl2 as solvent revealed competition between reduction to elemental palladium (due to oxidative addition of the Si-Si bond across Pd(II) and subsequent reductive elimination) and formation of an unusual eight-membered chelate complex cis-[PdCl2{(PhSCH2SiMe2)2O}] (4), which is fluxional in s…
Synthesis, crystallographic and electrochemical study of ethynyl[2.2]paracyclophane derived cobalt metallatetrahedranes
Abstract A series of alkynyl cobalt complexes [Co2(μ-η2-HCC–PCP)(CO)6−nLn] [n = 0 (2); n = 2, L2 = dppa (3), dppm (4), dcpm (6), 2 P(OPh)3 (7)] and [Co2(CO)4L2]2(μ-η2:μ-η2-HCC–PCP–CCH)] (L2 = dppm (8), dcpm (9); (PCP = [2.2]paracyclophane) has been prepared and characterized. The molecular structures of 3 and 4, as well as that of [Co2(CO)4(μ-CO)2(μ2-dcpm)] (5), have been determined by X-ray diffraction. Electrochemical studies (Cyclic Voltammetry, Rotating Disk Electrode) and luminescence spectroscopy have been used to evaluate the extent of the electronic communication through the PCP motif using the “Co2C2” centres as a probe. No electronic coupling between the Co2(CO)n centres via the b…
Regio- and Stereoselective Synthesis of Spiropyrrolizidines and Piperazines through Azomethine Ylide Cycloaddition Reaction.
A series of original spiropyrrolizidine derivatives has been prepared by a one-pot three-component [3 + 2] cycloaddition reaction of (E)-3-arylidene-1-phenyl-pyrrolidine-2,5-diones, l-proline, and the cyclic ketones 1H-indole-2,3-dione (isatin), indenoquinoxaline-11-one and acenaphthenequinone. We disclose an unprecedented isomerization of some spiroadducts leading to a new family of spirooxindolepyrrolizidines. Furthermore, these cycloadducts underwent retro-1,3-dipolar cycloaddition yielding unexpected regioisomers. Upon treatment of the dipolarophiles with in situ generated azomethine ylides from l-proline or acenaphthenequinone, formation of spiroadducts and unusual polycyclic fused pip…
Formation of (σ‐Alkenyl)‐ and (μ‐Vinylidene)palladium and ‐platinum Complexes by Oxidative Addition of 4,4‐Dichloro‐1,1‐diphenyl‐2‐azabuta‐1,3‐diene − The Molecular Structure of an Unusual Asymmetric (μ‐Vinylidene)Pd−Pd Complex
4,4-Dichloro-1,1-diphenyl-2-azabuta-1,3-diene (1) oxidatively adds to [Pd(PPh3)4] and [Pt(C2H4)(PPh3)2] giving rise to the σ-alkenyl complexes trans-[MCl{[C(Cl)=C(H)−N=CPh2]}(PPh3)2] (2a: M = Pd; 2b: M = Pt). When 1 is treated with [Pd(PPh3)4] in a 1:2 ratio in refluxing toluene, the dimetallic μ-vinylidene complex [(PPh3)ClPd{μ-[C=C(H)−N=CPh2]}PdCl(PPh3)2] (3) is formed. In this fluxional compound, a PPh3 ligands migrates in a reversible manner between the two Pd centers. Substitution of the PPh3 ligands of 3 by 2 equiv. of Ph2PCH2PPh2 affords the A-frame complex [ClPd(μ-dppm)2{μ-[C=C(H)−N=CPh2]}PdCl] (4). (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003)
1,3-Dipolar cycloaddition of diaryldiazomethanes across N-ethoxy-carbonyl-N-(2,2,2-trichloroethylidene)amine and reactivity of the resulting 2-azabutadienes towards thiolates and cyclic amides
Abstract 1,3-dipolar cycloaddition of diaryldiazomethanes Ar2C N2 across Cl3C–CH N–CO2Et 1 yields Δ3-1,2,4-triazolines 2. Thermolysis of 2 leads, via transient azomethine ylides 3, to diaryldichloroazabutadienes [Ar(Ar')C N–CH CCl2] 4. Treatment of 4a (Ar = Ar' = C6H5) and 4c (Ar = Ar' = p-ClC6H4) with NaSR in DMF yields 2-azabutadienes [Ar2C N–C(H) C(SR)2] 5. In contrast, nucleophilic attack of NaStBu on 4 affords azadienic dithioethers [Ar2C N–C(StBu) C(H)(StBu)] (7a Ar = C6H5; 7b Ar' = p-ClC6H4). The reaction of 4a with NaSEt conducted in neat EtSH produces [Ph2C N–C(H)(SEt)–CCl2H] 8, which after dehydrochloration by NaOMe and subsequent addition of NaSEt is converted to [Ph2C N–C(SEt) C…
Electrochemical deposition of a luminescent alkoxysilyl-based fluorenone film exhibiting halide sensitivity
International audience
Mono- and di-nuclear 2,3-diazabutadiene and 2-azabutadiene complexes of Rhenium(I): Syntheses, luminescence spectra and X-ray structures
Abstract Treatment of [Re(CO)3(THF)(μ-Br)]2 with 4,4-dichloro-1,1-diphenyl-2-azabuta-1,3-diene [Cl2C C(H)–N CPh2] (1a) yields the di-nuclear benzophenone azine-bridged compound [(OC)3Re(μ-Ph2C N–N CPh2)(μ-Br)2Re(CO)3] (2a), albeit in low yield. Alternatively, compounds [(OC)3Re(μ-Ph2C N–N CPh2)(μ-X)2Re(CO)3] (2a,b) (X = Br, Cl) are obtained in high yields by direct reaction of [Re(CO)3(THF)(μ-Br)]2 or [Re(CO)5Cl] with benzophenone azine. Nucleophilic attack of NaSPh on 1a affords the 2-azabutadiene derivative [(PhS)(Cl)C C(H)–N CPh2] (1b), which upon reaction with [Re(CO)3(THF)(μ-Br)]2 forms the S,N-chelate complex fac-[(OC)3ReBr{(PhS)(Cl)C C(H)–N CPh2}] (3). The crystal structures of 1b, 2…
4,4-Bis(4-methylphenylsulfanyl)-1,1-diphenyl-2-azabuta-1,3-diene
In the title compound, C29H25NS2, both the Cl atoms of the azadiene precursor 4,4-dichloro-1,1-diphenyl-2-azabuta-1,3-diene are replaced by two vicinal S-p-tolyl substituents attached to the terminal C atom of a π-conjugated 2-azabutadiene array. The azadiene chain is planar to within 0.01 Å. One of the phenyl rings seems to be slightly π-conjugated with the azadiene core [dihedral angle 5.1 (2)°].
Reactivity of 4,4-Dichloro-1,1-diphenyl-2-azabutadiene Towards Alkoxides and Thiolates: Synthesis of Functionalised π-Conjugated 2-Azabutadienes and Unexpected 1,4-Thiazine Formation
Treatment of 4,4-dichloro-1,1-diphenyl-2-azabuta-1,3-diene [Cl2C=C(H)-N=CPh2] (1) with excess sodium isopropylthiolate or sodium thiophenolate in DMF yielded the 2-azabutadiene derivatives (RS)2C=C(H)–N=CPh2 (2) (2a R = iPr; 2b R = Ph). Nucleophilic attack of the sodium salt of ethyl thioglycolate on 1 afforded as the sole product the six-membered heterocyclic compound ethyl 2-ethoxycarbonylmethylthio-5,5-diphenyl-5,6-dihydro-4H-1,4-thiazine-6-carboxylate (5). The reaction is initiated by substitution of the two vinyl-bound chloro substituents to give {EtO(O=)CCH2S}2C=C(H)–N=CPh2 (2c) as intermediate. A mechanism that accounts for the subsequent cyclisation reaction is proposed. The 2-azabu…
Reactivity of CuI and CuBr toward Dialkyl Sulfides RSR: From Discrete Molecular Cu I S and Cu I S Clusters to Luminescent Copper(I) Coordination Polymers
The 1D coordination polymer (CP) [(Me2S)3{Cu2(μ-I)2}]n (1) is formed when CuI reacts with SMe2 in n-heptane, whereas in acetonitrile (MeCN), the reaction forms exclusively the 2D CP [(Me2S)3{Cu4(μ-I)4}]n (2) containing “flower-basket” Cu4I4 units. The reaction product of CuI with MeSEt is also solvent-dependent, where the 1D polymer [(MeSEt)2{Cu4(μ3-I)2(μ2-I)2}(MeCN)2]n (3) containing “stepped-cubane” Cu4I4 units is isolated in MeCN. In contrast, the reaction in n-heptane affords the 1D CP [(MeSEt)3{Cu4(μ3-I)4}]n (4) containing “closed-cubane” Cu4I4 clusters. The reaction of MeSPr with CuI provides the structurally related 1D CP [(MeSPr)3{Cu4(μ3-I)4}]n (5), for which the X-ray structure has…
ChemInform Abstract: Regio- and Stereoselective Synthesis of Spiropyrrolizidines and Piperazines Through Azomethine Ylide Cycloaddition Reaction.
A series of original spiropyrrolizidine derivatives has been prepared by a one-pot three-component [3 + 2] cycloaddition reaction of (E)-3-arylidene-1-phenyl-pyrrolidine-2,5-diones, l-proline, and the cyclic ketones 1H-indole-2,3-dione (isatin), indenoquinoxaline-11-one and acenaphthenequinone. We disclose an unprecedented isomerization of some spiroadducts leading to a new family of spirooxindolepyrrolizidines. Furthermore, these cycloadducts underwent retro-1,3-dipolar cycloaddition yielding unexpected regioisomers. Upon treatment of the dipolarophiles with in situ generated azomethine ylides from l-proline or acenaphthenequinone, formation of spiroadducts and unusual polycyclic fused pip…
(2,2‐Dibromovinyl)ferrocene as a Building Block for the Assembly of Heterodinuclear Complexes – Preparation of an σ‐Alkenylpalladium Complex and Dimetallic Dithioether Complexes
The oxidative addition of (2,2-dibromovinyl)ferrocene [Br2C=C(H)–Fc] (1) to [Pd(PPh3)4] yields the heterodinuclear σ-alkenyl complex trans-[{Pd(Br)(PPh3)2}–C(Br)=C(H)–Fc] (2). Nucleophilic attack of sodium thiolates on 1 unexpectedly affords the vinyl thioether derivatives (Z)-[(RS)(H)C=C(H)–Fc] (4a: R = Ph; 4b: R = tBu; 4c: R = Et). Complexes 4a and 4c can also be prepared by addition of NaSR across the triple bond of Fc–C≡C–H (3). Addition of an excess of NaSR to 1 affords the dithioether derivatives (Z)-[(RS)(H)C=C(SR)–Fc] (5a: R = Ph; 5b: R = p-tolyl; 5c: R = Et). An addition/elimination sequence is suggested to account for this surprising result. The yield of 5c is very low due to a co…
Formation of an unprecedented (CuBr)5 cluster and a zeolite-type 2D-coordination polymer: a surprising halide effect
A unique pentanuclear cluster within a zeolite-type polymer ([Cu5(μ4-Br)(μ3-Br)2(μ2-Br)2](μ2-MeSPr)3)n (1; void space >81%) and a luminescent 1D ([Cu(μ3-I)]4(MeSPr)3)n polymer, 2, are formed when MeSPr reacts with CuBr and CuI.
Crystal structure of tricarbonyl(μ-diphenylphosphido-κ2P:P)(methyldiphenylsilyl-κSi)bis(triphenylphosphane-κP)iron(II)platinum(0)(Fe—Pt)
The title compound belongs to the large family of heterodinuclear phosphide-bridged complexes. The Fe—Pt bond is of 2.7738 (4) Å and there is an unprecedented arrangement of the silyl ligand in a trans-position with respect to the metal–metal vector in the family of phosphide-bridged iron–platinum heterobimetallics.
Synthesis of μ-C2S44− Cobalt Complexes by Activation of the 1,3,4,6-tetrathiapentalene-2,5-dione, and Electrochemical Study of [(Cp*Co)2(μ-C2S4)]
The bimetallic complex [Cp(*)Co)2(μ-C2S4)] in which the two metal centres are linked by an ethylenetetrathiolate C2S44− unit, was synthesized in high yield by oxidative addition of 1,3,4,6 tetrathiapentalene-2,5-dione to [Cp(*)Co(CO)2]. The X-ray crystal structure of the intermediate product Cp*Co(dmid) (dmid2− = 4,5-disulfanyl-1,3-dithiol-2-onate) is presented. The electrochemical behaviour of the [(Cp*Co)2(μ-C2S4)] complex was studied in detail in the oxidative range. This study has shown that the nature of the product obtained after oxidation depends on the presence of complexing agent in the solution. The mechanism has been elucidated in a CH2Cl2 solution in the presence of P(OMe)3. In …
1,3-Dipolar Cycloaddition Reactions of Indan-1-one Enamines across Arylnitrile Oxides Leading to Novel Cyclic Isoxazoline Derivatives
Synthesis of a series of cyclic fused-isoxazolines has been accomplished by regioselective and diastereoselective 1,3-dipolar cycloaddition of 3-methylindan-1-one enamines (1a, 1b, 1c) and 3-phenylindan-1-one enamines (2a, 2b, 2c) to arylnitrile oxides (3d, 3e, 3f, 3g, 3h). The structure of the cycloadducts was elucidated by 1H and 13C NMR spectroscopy. The proposed regio- and stereochemistry of fused-compounds (4) and (5) has also been corroborated by two single-crystal X-ray diffraction studies carried out on 4-methyl-8b-morpholinyl-3-(p-tolyl)-4H-3a,8b-dihydroindeno[2,3-d]isoxazoline (4be) and 3-(p-anisyl)-4-phenyl-8b-pyrrolidinyl-4H-3a,8b-dihydroindeno[2,3-d]isoxazoline (5af) and by mea…
1,4-Bis(arylthio)but-2-enes as Assembling Ligands for (Cu2X2)n (X = I, Br; n = 1, 2) Coordination Polymers: Aryl Substitution, Olefin Configuration, and Halide Effects on the Dimensionality, Cluster Size, and Luminescence Properties
CuI reacts with E-PhS(CH2CH═CHCH2)SPh, L1, to afford the coordination polymer (CP) [Cu2I2{μ-E-PhS(CH2CH═CHCH2)SPh}2]n (1a). The unprecedented square-grid network of 1 is built upon alternating two-dimensional (2D) layers with an ABAB sequence and contains rhomboid Cu2(μ2-I)2 clusters as secondary building units (SBUs). Notably, layer A, interconnected by bridging L1 ligands, contains exclusively dinuclear units with short Cu···Cu separations [2.6485(7) A; 115 K]. In contrast, layer B exhibits Cu···Cu distances of 2.8133(8) A. The same network is observed when CuBr reacts with L1. In the 2D network of [Cu2Br2{μ-E-PhS(CH2CH═CHCH2)SPh}2]n (1b), isotype to 1a, one square-grid-type layer contain…
Synthesis and reactivity of an 2-azabutadiene-based π-conjugated dithioether: Formation of a N,S-ligated molybdenum chelate complex and C,N,S-pincer complexes of palladium and platinum
Abstract Nucleophilic attack of sodium isopropylthiolate on 4,4-dichloro-1,1-diphenyl-2-azabuta-1,3-diene [Cl2C C(H)–N CPh2}] (1) affords the 2-azabutadiene derivative [(i-PrS)2C C(H)–N CPh2] (2). Upon irradiation of Mo(CO)6 in THF in the presence of 2, the chelate complex cis-[(OC)4Mo{(i-PrS)2C C(H)–N CPh2}] (3) is obtained. Coordination on Mo occurs through the imine nitrogen and a thioether group. Polydentate dithioether 2 acts as N,C,S-pincer ligand after orthometallation reaction with Pd(II) or Pt(II). The molecular structures of 2 and (C,N,S)-[(i-PrS)2C C(H)–N C(Ph)C6H4)PtCl] (4b) have been determined by X-ray diffraction studies.
CCDC 1029334: Experimental Crystal Structure Determination
Related Article: Chourouk Mhiri, Fadwa Rouatbi, Sarra Boudriga, Moheddine Askri, Kabula Ciamala, Michael Knorr, Karin Monnier-Jobé, Abderrahim Khatyr, Yoann Rousselin, Marek M. Kubicki|2015|Mediterranean J.Chem.|4|30|doi:10.13171/mjc.4.1.2015.18.02.09.52/askri
CCDC 1029336: Experimental Crystal Structure Determination
Related Article: Chourouk Mhiri, Fadwa Rouatbi, Sarra Boudriga, Moheddine Askri, Kabula Ciamala, Michael Knorr, Karin Monnier-Jobé, Abderrahim Khatyr, Yoann Rousselin, Marek M. Kubicki|2015|Mediterranean J.Chem.|4|30|doi:10.13171/mjc.4.1.2015.18.02.09.52/askri
CCDC 1405446: Experimental Crystal Structure Determination
Related Article: Saoussen Haddad, Sarra Boudriga, François Porzio, Armand Soldera, Moheddine Askri, Michael Knorr, Yoann Rousselin, Marek M. Kubicki, Christopher Golz, and Carsten Strohmann|2015|J.Org.Chem.|80|9064|doi:10.1021/acs.joc.5b01399
CCDC 1405448: Experimental Crystal Structure Determination
Related Article: Saoussen Haddad, Sarra Boudriga, François Porzio, Armand Soldera, Moheddine Askri, Michael Knorr, Yoann Rousselin, Marek M. Kubicki, Christopher Golz, and Carsten Strohmann|2015|J.Org.Chem.|80|9064|doi:10.1021/acs.joc.5b01399
CCDC 1047405: Experimental Crystal Structure Determination
Related Article: Michael Knorr, Abderrahim Khatyr, Antony Lapprand, Antoine Bonnot, Carsten Strohmann, Marek M. Kubicki, Yoann Rousselin, Pierre D. Harvey|2015|Inorg.Chem.|54|4076|doi:10.1021/acs.inorgchem.5b00327
CCDC 1418779: Experimental Crystal Structure Determination
Related Article: Antoine Bonnot, Michael Knorr, Fabrice Guyon, Marek M. Kubicki, Yoann Rousselin, Carsten Strohmann, Daniel Fortin, Pierre D. Harvey|2016|Cryst.Growth Des.|16|774|doi:10.1021/acs.cgd.5b01360
CCDC 835277: Experimental Crystal Structure Determination
Related Article: Rodolphe Kinghat, Gérard Schmitt, Kabula Ciamala, Abderrahim Khatyr, Michael Knorr, Sandrine Jacquot-Rousseau, Yoann Rousselin, Marek M. Kubicki|2016|Comptes Rendus Chimie|19|320|doi:10.1016/j.crci.2015.09.017
CCDC 1047403: Experimental Crystal Structure Determination
Related Article: Michael Knorr, Abderrahim Khatyr, Antony Lapprand, Antoine Bonnot, Carsten Strohmann, Marek M. Kubicki, Yoann Rousselin, Pierre D. Harvey|2015|Inorg.Chem.|54|4076|doi:10.1021/acs.inorgchem.5b00327
CCDC 1047398: Experimental Crystal Structure Determination
Related Article: Michael Knorr, Abderrahim Khatyr, Antony Lapprand, Antoine Bonnot, Carsten Strohmann, Marek M. Kubicki, Yoann Rousselin, Pierre D. Harvey|2015|Inorg.Chem.|54|4076|doi:10.1021/acs.inorgchem.5b00327
CCDC 974338: Experimental Crystal Structure Determination
Related Article: Michael Knorr,Abderrahim Khatyr,Ahmed Dini Aleo,Anass El Yaagoubi,Carsten Strohmann,Marek M. Kubicki,Yoann Rousselin,Shawkat M. Aly,Antony Lapprand,Daniel Fortin, Pierre D. Harvey|2014|Cryst.Growth Des.|14|5373|doi:10.1021/cg500905z
CCDC 1047410: Experimental Crystal Structure Determination
Related Article: Michael Knorr, Abderrahim Khatyr, Antony Lapprand, Antoine Bonnot, Carsten Strohmann, Marek M. Kubicki, Yoann Rousselin, Pierre D. Harvey|2015|Inorg.Chem.|54|4076|doi:10.1021/acs.inorgchem.5b00327
CCDC 974340: Experimental Crystal Structure Determination
Related Article: Michael Knorr,Abderrahim Khatyr,Ahmed Dini Aleo,Anass El Yaagoubi,Carsten Strohmann,Marek M. Kubicki,Yoann Rousselin,Shawkat M. Aly,Antony Lapprand,Daniel Fortin, Pierre D. Harvey|2014|Cryst.Growth Des.|14|5373|doi:10.1021/cg500905z
CCDC 1418785: Experimental Crystal Structure Determination
Related Article: Antoine Bonnot, Michael Knorr, Fabrice Guyon, Marek M. Kubicki, Yoann Rousselin, Carsten Strohmann, Daniel Fortin, Pierre D. Harvey|2016|Cryst.Growth Des.|16|774|doi:10.1021/acs.cgd.5b01360
CCDC 1047408: Experimental Crystal Structure Determination
Related Article: Michael Knorr, Abderrahim Khatyr, Antony Lapprand, Antoine Bonnot, Carsten Strohmann, Marek M. Kubicki, Yoann Rousselin, Pierre D. Harvey|2015|Inorg.Chem.|54|4076|doi:10.1021/acs.inorgchem.5b00327
CCDC 835276: Experimental Crystal Structure Determination
Related Article: Rodolphe Kinghat, Gérard Schmitt, Kabula Ciamala, Abderrahim Khatyr, Michael Knorr, Sandrine Jacquot-Rousseau, Yoann Rousselin, Marek M. Kubicki|2016|Comptes Rendus Chimie|19|320|doi:10.1016/j.crci.2015.09.017
CCDC 1418780: Experimental Crystal Structure Determination
Related Article: Antoine Bonnot, Michael Knorr, Fabrice Guyon, Marek M. Kubicki, Yoann Rousselin, Carsten Strohmann, Daniel Fortin, Pierre D. Harvey|2016|Cryst.Growth Des.|16|774|doi:10.1021/acs.cgd.5b01360
CCDC 974327: Experimental Crystal Structure Determination
Related Article: Michael Knorr,Abderrahim Khatyr,Ahmed Dini Aleo,Anass El Yaagoubi,Carsten Strohmann,Marek M. Kubicki,Yoann Rousselin,Shawkat M. Aly,Antony Lapprand,Daniel Fortin, Pierre D. Harvey|2014|Cryst.Growth Des.|14|5373|doi:10.1021/cg500905z
CCDC 1047402: Experimental Crystal Structure Determination
Related Article: Michael Knorr, Abderrahim Khatyr, Antony Lapprand, Antoine Bonnot, Carsten Strohmann, Marek M. Kubicki, Yoann Rousselin, Pierre D. Harvey|2015|Inorg.Chem.|54|4076|doi:10.1021/acs.inorgchem.5b00327
CCDC 1418767: Experimental Crystal Structure Determination
Related Article: Antoine Bonnot, Michael Knorr, Fabrice Guyon, Marek M. Kubicki, Yoann Rousselin, Carsten Strohmann, Daniel Fortin, Pierre D. Harvey|2016|Cryst.Growth Des.|16|774|doi:10.1021/acs.cgd.5b01360
CCDC 1418763: Experimental Crystal Structure Determination
Related Article: Antoine Bonnot, Michael Knorr, Fabrice Guyon, Marek M. Kubicki, Yoann Rousselin, Carsten Strohmann, Daniel Fortin, Pierre D. Harvey|2016|Cryst.Growth Des.|16|774|doi:10.1021/acs.cgd.5b01360
CCDC 1047394: Experimental Crystal Structure Determination
Related Article: Michael Knorr, Abderrahim Khatyr, Antony Lapprand, Antoine Bonnot, Carsten Strohmann, Marek M. Kubicki, Yoann Rousselin, Pierre D. Harvey|2015|Inorg.Chem.|54|4076|doi:10.1021/acs.inorgchem.5b00327
CCDC 1418781: Experimental Crystal Structure Determination
Related Article: Antoine Bonnot, Michael Knorr, Fabrice Guyon, Marek M. Kubicki, Yoann Rousselin, Carsten Strohmann, Daniel Fortin, Pierre D. Harvey|2016|Cryst.Growth Des.|16|774|doi:10.1021/acs.cgd.5b01360
CCDC 1418772: Experimental Crystal Structure Determination
Related Article: Antoine Bonnot, Michael Knorr, Fabrice Guyon, Marek M. Kubicki, Yoann Rousselin, Carsten Strohmann, Daniel Fortin, Pierre D. Harvey|2016|Cryst.Growth Des.|16|774|doi:10.1021/acs.cgd.5b01360
CCDC 974334: Experimental Crystal Structure Determination
Related Article: Michael Knorr,Abderrahim Khatyr,Ahmed Dini Aleo,Anass El Yaagoubi,Carsten Strohmann,Marek M. Kubicki,Yoann Rousselin,Shawkat M. Aly,Antony Lapprand,Daniel Fortin, Pierre D. Harvey|2014|Cryst.Growth Des.|14|5373|doi:10.1021/cg500905z
CCDC 1405449: Experimental Crystal Structure Determination
Related Article: Saoussen Haddad, Sarra Boudriga, François Porzio, Armand Soldera, Moheddine Askri, Michael Knorr, Yoann Rousselin, Marek M. Kubicki, Christopher Golz, and Carsten Strohmann|2015|J.Org.Chem.|80|9064|doi:10.1021/acs.joc.5b01399
CCDC 830704: Experimental Crystal Structure Determination
Related Article: Hanene Jelizi, Nadia Wannassi, Mohamed El Baker Rammah, Kabula Ciamala, Michael Knorr, Yoann Rousselin, Marek M. Kubicki, Carsten Strohmann and Mironel Enescu|2014|J.Heterocycl.Chem.|51|383|doi:10.1002/jhet.1588
CCDC 1418782: Experimental Crystal Structure Determination
Related Article: Antoine Bonnot, Michael Knorr, Fabrice Guyon, Marek M. Kubicki, Yoann Rousselin, Carsten Strohmann, Daniel Fortin, Pierre D. Harvey|2016|Cryst.Growth Des.|16|774|doi:10.1021/acs.cgd.5b01360
CCDC 1418770: Experimental Crystal Structure Determination
Related Article: Antoine Bonnot, Michael Knorr, Fabrice Guyon, Marek M. Kubicki, Yoann Rousselin, Carsten Strohmann, Daniel Fortin, Pierre D. Harvey|2016|Cryst.Growth Des.|16|774|doi:10.1021/acs.cgd.5b01360
CCDC 1418765: Experimental Crystal Structure Determination
Related Article: Antoine Bonnot, Michael Knorr, Fabrice Guyon, Marek M. Kubicki, Yoann Rousselin, Carsten Strohmann, Daniel Fortin, Pierre D. Harvey|2016|Cryst.Growth Des.|16|774|doi:10.1021/acs.cgd.5b01360
CCDC 974333: Experimental Crystal Structure Determination
Related Article: Michael Knorr,Abderrahim Khatyr,Ahmed Dini Aleo,Anass El Yaagoubi,Carsten Strohmann,Marek M. Kubicki,Yoann Rousselin,Shawkat M. Aly,Antony Lapprand,Daniel Fortin, Pierre D. Harvey|2014|Cryst.Growth Des.|14|5373|doi:10.1021/cg500905z
CCDC 1047411: Experimental Crystal Structure Determination
Related Article: Michael Knorr, Abderrahim Khatyr, Antony Lapprand, Antoine Bonnot, Carsten Strohmann, Marek M. Kubicki, Yoann Rousselin, Pierre D. Harvey|2015|Inorg.Chem.|54|4076|doi:10.1021/acs.inorgchem.5b00327
CCDC 947670: Experimental Crystal Structure Determination
Related Article: Antony Lapprand, Antoine Bonnot, Michael Knorr, Youann Rousselin, Marek M. Kubicki, Daniel Fortin, Pierre D. Harvey|2013|Chem.Commun.|49|8848|doi:10.1039/C3CC45284K
CCDC 1047401: Experimental Crystal Structure Determination
Related Article: Michael Knorr, Abderrahim Khatyr, Antony Lapprand, Antoine Bonnot, Carsten Strohmann, Marek M. Kubicki, Yoann Rousselin, Pierre D. Harvey|2015|Inorg.Chem.|54|4076|doi:10.1021/acs.inorgchem.5b00327
CCDC 1479591: Experimental Crystal Structure Determination
Related Article: Marwa Chaabéne, Abderrahim Khatyr, Michael Knorr, Moheddine Askri, Yoann Rousselin, Marek M. Kubicki|2016|Inorg.Chim.Acta|451|177|doi:10.1016/j.ica.2016.07.023
CCDC 1418776: Experimental Crystal Structure Determination
Related Article: Antoine Bonnot, Michael Knorr, Fabrice Guyon, Marek M. Kubicki, Yoann Rousselin, Carsten Strohmann, Daniel Fortin, Pierre D. Harvey|2016|Cryst.Growth Des.|16|774|doi:10.1021/acs.cgd.5b01360
CCDC 1418784: Experimental Crystal Structure Determination
Related Article: Antoine Bonnot, Michael Knorr, Fabrice Guyon, Marek M. Kubicki, Yoann Rousselin, Carsten Strohmann, Daniel Fortin, Pierre D. Harvey|2016|Cryst.Growth Des.|16|774|doi:10.1021/acs.cgd.5b01360
CCDC 1047396: Experimental Crystal Structure Determination
Related Article: Michael Knorr, Abderrahim Khatyr, Antony Lapprand, Antoine Bonnot, Carsten Strohmann, Marek M. Kubicki, Yoann Rousselin, Pierre D. Harvey|2015|Inorg.Chem.|54|4076|doi:10.1021/acs.inorgchem.5b00327
CCDC 1405447: Experimental Crystal Structure Determination
Related Article: Saoussen Haddad, Sarra Boudriga, François Porzio, Armand Soldera, Moheddine Askri, Michael Knorr, Yoann Rousselin, Marek M. Kubicki, Christopher Golz, and Carsten Strohmann|2015|J.Org.Chem.|80|9064|doi:10.1021/acs.joc.5b01399
CCDC 831070: Experimental Crystal Structure Determination
Related Article: Hanene Jelizi, Nadia Wannassi, Mohamed El Baker Rammah, Kabula Ciamala, Michael Knorr, Yoann Rousselin, Marek M. Kubicki, Carsten Strohmann and Mironel Enescu|2014|J.Heterocycl.Chem.|51|383|doi:10.1002/jhet.1588
CCDC 889646: Experimental Crystal Structure Determination
Related Article: Rodolphe Kinghat, Gérard Schmitt, Kabula Ciamala, Abderrahim Khatyr, Michael Knorr, Sandrine Jacquot-Rousseau, Yoann Rousselin, Marek M. Kubicki|2016|Comptes Rendus Chimie|19|320|doi:10.1016/j.crci.2015.09.017
CCDC 974326: Experimental Crystal Structure Determination
Related Article: Michael Knorr,Abderrahim Khatyr,Ahmed Dini Aleo,Anass El Yaagoubi,Carsten Strohmann,Marek M. Kubicki,Yoann Rousselin,Shawkat M. Aly,Antony Lapprand,Daniel Fortin, Pierre D. Harvey|2014|Cryst.Growth Des.|14|5373|doi:10.1021/cg500905z
CCDC 974341: Experimental Crystal Structure Determination
Related Article: Michael Knorr,Abderrahim Khatyr,Ahmed Dini Aleo,Anass El Yaagoubi,Carsten Strohmann,Marek M. Kubicki,Yoann Rousselin,Shawkat M. Aly,Antony Lapprand,Daniel Fortin, Pierre D. Harvey|2014|Cryst.Growth Des.|14|5373|doi:10.1021/cg500905z
CCDC 974324: Experimental Crystal Structure Determination
Related Article: Michael Knorr,Abderrahim Khatyr,Ahmed Dini Aleo,Anass El Yaagoubi,Carsten Strohmann,Marek M. Kubicki,Yoann Rousselin,Shawkat M. Aly,Antony Lapprand,Daniel Fortin, Pierre D. Harvey|2014|Cryst.Growth Des.|14|5373|doi:10.1021/cg500905z
CCDC 1047399: Experimental Crystal Structure Determination
Related Article: Michael Knorr, Abderrahim Khatyr, Antony Lapprand, Antoine Bonnot, Carsten Strohmann, Marek M. Kubicki, Yoann Rousselin, Pierre D. Harvey|2015|Inorg.Chem.|54|4076|doi:10.1021/acs.inorgchem.5b00327
CCDC 1418769: Experimental Crystal Structure Determination
Related Article: Antoine Bonnot, Michael Knorr, Fabrice Guyon, Marek M. Kubicki, Yoann Rousselin, Carsten Strohmann, Daniel Fortin, Pierre D. Harvey|2016|Cryst.Growth Des.|16|774|doi:10.1021/acs.cgd.5b01360
CCDC 974325: Experimental Crystal Structure Determination
Related Article: Michael Knorr,Abderrahim Khatyr,Ahmed Dini Aleo,Anass El Yaagoubi,Carsten Strohmann,Marek M. Kubicki,Yoann Rousselin,Shawkat M. Aly,Antony Lapprand,Daniel Fortin, Pierre D. Harvey|2014|Cryst.Growth Des.|14|5373|doi:10.1021/cg500905z
CCDC 941426: Experimental Crystal Structure Determination
Related Article: Rodolphe Kinghat, Gérard Schmitt, Kabula Ciamala, Abderrahim Khatyr, Michael Knorr, Sandrine Jacquot-Rousseau, Yoann Rousselin, Marek M. Kubicki|2016|Comptes Rendus Chimie|19|320|doi:10.1016/j.crci.2015.09.017
CCDC 1418774: Experimental Crystal Structure Determination
Related Article: Antoine Bonnot, Michael Knorr, Fabrice Guyon, Marek M. Kubicki, Yoann Rousselin, Carsten Strohmann, Daniel Fortin, Pierre D. Harvey|2016|Cryst.Growth Des.|16|774|doi:10.1021/acs.cgd.5b01360
CCDC 1418783: Experimental Crystal Structure Determination
Related Article: Antoine Bonnot, Michael Knorr, Fabrice Guyon, Marek M. Kubicki, Yoann Rousselin, Carsten Strohmann, Daniel Fortin, Pierre D. Harvey|2016|Cryst.Growth Des.|16|774|doi:10.1021/acs.cgd.5b01360
CCDC 1418771: Experimental Crystal Structure Determination
Related Article: Antoine Bonnot, Michael Knorr, Fabrice Guyon, Marek M. Kubicki, Yoann Rousselin, Carsten Strohmann, Daniel Fortin, Pierre D. Harvey|2016|Cryst.Growth Des.|16|774|doi:10.1021/acs.cgd.5b01360
CCDC 1047412: Experimental Crystal Structure Determination
Related Article: Michael Knorr, Abderrahim Khatyr, Antony Lapprand, Antoine Bonnot, Carsten Strohmann, Marek M. Kubicki, Yoann Rousselin, Pierre D. Harvey|2015|Inorg.Chem.|54|4076|doi:10.1021/acs.inorgchem.5b00327
CCDC 1047404: Experimental Crystal Structure Determination
Related Article: Michael Knorr, Abderrahim Khatyr, Antony Lapprand, Antoine Bonnot, Carsten Strohmann, Marek M. Kubicki, Yoann Rousselin, Pierre D. Harvey|2015|Inorg.Chem.|54|4076|doi:10.1021/acs.inorgchem.5b00327
CCDC 974328: Experimental Crystal Structure Determination
Related Article: Michael Knorr,Abderrahim Khatyr,Ahmed Dini Aleo,Anass El Yaagoubi,Carsten Strohmann,Marek M. Kubicki,Yoann Rousselin,Shawkat M. Aly,Antony Lapprand,Daniel Fortin, Pierre D. Harvey|2014|Cryst.Growth Des.|14|5373|doi:10.1021/cg500905z
CCDC 1479590: Experimental Crystal Structure Determination
Related Article: Marwa Chaabéne, Abderrahim Khatyr, Michael Knorr, Moheddine Askri, Yoann Rousselin, Marek M. Kubicki|2016|Inorg.Chim.Acta|451|177|doi:10.1016/j.ica.2016.07.023
CCDC 1047409: Experimental Crystal Structure Determination
Related Article: Michael Knorr, Abderrahim Khatyr, Antony Lapprand, Antoine Bonnot, Carsten Strohmann, Marek M. Kubicki, Yoann Rousselin, Pierre D. Harvey|2015|Inorg.Chem.|54|4076|doi:10.1021/acs.inorgchem.5b00327
CCDC 1047406: Experimental Crystal Structure Determination
Related Article: Michael Knorr, Abderrahim Khatyr, Antony Lapprand, Antoine Bonnot, Carsten Strohmann, Marek M. Kubicki, Yoann Rousselin, Pierre D. Harvey|2015|Inorg.Chem.|54|4076|doi:10.1021/acs.inorgchem.5b00327
CCDC 1047407: Experimental Crystal Structure Determination
Related Article: Michael Knorr, Abderrahim Khatyr, Antony Lapprand, Antoine Bonnot, Carsten Strohmann, Marek M. Kubicki, Yoann Rousselin, Pierre D. Harvey|2015|Inorg.Chem.|54|4076|doi:10.1021/acs.inorgchem.5b00327
CCDC 1479592: Experimental Crystal Structure Determination
Related Article: Marwa Chaabéne, Abderrahim Khatyr, Michael Knorr, Moheddine Askri, Yoann Rousselin, Marek M. Kubicki|2016|Inorg.Chim.Acta|451|177|doi:10.1016/j.ica.2016.07.023
CCDC 1418766: Experimental Crystal Structure Determination
Related Article: Antoine Bonnot, Michael Knorr, Fabrice Guyon, Marek M. Kubicki, Yoann Rousselin, Carsten Strohmann, Daniel Fortin, Pierre D. Harvey|2016|Cryst.Growth Des.|16|774|doi:10.1021/acs.cgd.5b01360
CCDC 974336: Experimental Crystal Structure Determination
Related Article: Michael Knorr,Abderrahim Khatyr,Ahmed Dini Aleo,Anass El Yaagoubi,Carsten Strohmann,Marek M. Kubicki,Yoann Rousselin,Shawkat M. Aly,Antony Lapprand,Daniel Fortin, Pierre D. Harvey|2014|Cryst.Growth Des.|14|5373|doi:10.1021/cg500905z
CCDC 974335: Experimental Crystal Structure Determination
Related Article: Michael Knorr,Abderrahim Khatyr,Ahmed Dini Aleo,Anass El Yaagoubi,Carsten Strohmann,Marek M. Kubicki,Yoann Rousselin,Shawkat M. Aly,Antony Lapprand,Daniel Fortin, Pierre D. Harvey|2014|Cryst.Growth Des.|14|5373|doi:10.1021/cg500905z
CCDC 1418764: Experimental Crystal Structure Determination
Related Article: Antoine Bonnot, Michael Knorr, Fabrice Guyon, Marek M. Kubicki, Yoann Rousselin, Carsten Strohmann, Daniel Fortin, Pierre D. Harvey|2016|Cryst.Growth Des.|16|774|doi:10.1021/acs.cgd.5b01360
CCDC 1447439: Experimental Crystal Structure Determination
Related Article: Fadwa Rouatbi, Chourouk Mhiri, Moheddine Askri, Michael Knorr, Yoann Rousselin and Marek M. Kubicki|2017|J.Heterocycl.Chem.|54|1152|doi:10.1002/jhet.2684
CCDC 1418775: Experimental Crystal Structure Determination
Related Article: Antoine Bonnot, Michael Knorr, Fabrice Guyon, Marek M. Kubicki, Yoann Rousselin, Carsten Strohmann, Daniel Fortin, Pierre D. Harvey|2016|Cryst.Growth Des.|16|774|doi:10.1021/acs.cgd.5b01360
CCDC 1047400: Experimental Crystal Structure Determination
Related Article: Michael Knorr, Abderrahim Khatyr, Antony Lapprand, Antoine Bonnot, Carsten Strohmann, Marek M. Kubicki, Yoann Rousselin, Pierre D. Harvey|2015|Inorg.Chem.|54|4076|doi:10.1021/acs.inorgchem.5b00327
CCDC 974337: Experimental Crystal Structure Determination
Related Article: Michael Knorr,Abderrahim Khatyr,Ahmed Dini Aleo,Anass El Yaagoubi,Carsten Strohmann,Marek M. Kubicki,Yoann Rousselin,Shawkat M. Aly,Antony Lapprand,Daniel Fortin, Pierre D. Harvey|2014|Cryst.Growth Des.|14|5373|doi:10.1021/cg500905z
CCDC 1418762: Experimental Crystal Structure Determination
Related Article: Antoine Bonnot, Michael Knorr, Fabrice Guyon, Marek M. Kubicki, Yoann Rousselin, Carsten Strohmann, Daniel Fortin, Pierre D. Harvey|2016|Cryst.Growth Des.|16|774|doi:10.1021/acs.cgd.5b01360
CCDC 1447438: Experimental Crystal Structure Determination
Related Article: Fadwa Rouatbi, Chourouk Mhiri, Moheddine Askri, Michael Knorr, Yoann Rousselin and Marek M. Kubicki|2017|J.Heterocycl.Chem.|54|1152|doi:10.1002/jhet.2684
CCDC 974329: Experimental Crystal Structure Determination
Related Article: Michael Knorr,Abderrahim Khatyr,Ahmed Dini Aleo,Anass El Yaagoubi,Carsten Strohmann,Marek M. Kubicki,Yoann Rousselin,Shawkat M. Aly,Antony Lapprand,Daniel Fortin, Pierre D. Harvey|2014|Cryst.Growth Des.|14|5373|doi:10.1021/cg500905z
CCDC 1431598: Experimental Crystal Structure Determination
Related Article: Antoine Bonnot, Michael Knorr, Fabrice Guyon, Marek M. Kubicki, Yoann Rousselin, Carsten Strohmann, Daniel Fortin, Pierre D. Harvey|2016|Cryst.Growth Des.|16|774|doi:10.1021/acs.cgd.5b01360
CCDC 1418773: Experimental Crystal Structure Determination
Related Article: Antoine Bonnot, Michael Knorr, Fabrice Guyon, Marek M. Kubicki, Yoann Rousselin, Carsten Strohmann, Daniel Fortin, Pierre D. Harvey|2016|Cryst.Growth Des.|16|774|doi:10.1021/acs.cgd.5b01360
CCDC 1405500: Experimental Crystal Structure Determination
Related Article: Mohamed Mehdi Rammah, Wafa Gati, Hasan Mtiraoui, Mohamed El Baker Rammah, Kabula Ciamala, Michael Knorr, Yoann Rousselin, Marek M. Kubicki|2016|Molecules|21|307|doi:10.3390/molecules21030307
CCDC 1418768: Experimental Crystal Structure Determination
Related Article: Antoine Bonnot, Michael Knorr, Fabrice Guyon, Marek M. Kubicki, Yoann Rousselin, Carsten Strohmann, Daniel Fortin, Pierre D. Harvey|2016|Cryst.Growth Des.|16|774|doi:10.1021/acs.cgd.5b01360
CCDC 1047395: Experimental Crystal Structure Determination
Related Article: Michael Knorr, Abderrahim Khatyr, Antony Lapprand, Antoine Bonnot, Carsten Strohmann, Marek M. Kubicki, Yoann Rousselin, Pierre D. Harvey|2015|Inorg.Chem.|54|4076|doi:10.1021/acs.inorgchem.5b00327
CCDC 974339: Experimental Crystal Structure Determination
Related Article: Michael Knorr,Abderrahim Khatyr,Ahmed Dini Aleo,Anass El Yaagoubi,Carsten Strohmann,Marek M. Kubicki,Yoann Rousselin,Shawkat M. Aly,Antony Lapprand,Daniel Fortin, Pierre D. Harvey|2014|Cryst.Growth Des.|14|5373|doi:10.1021/cg500905z
CCDC 947669: Experimental Crystal Structure Determination
Related Article: Antony Lapprand, Antoine Bonnot, Michael Knorr, Youann Rousselin, Marek M. Kubicki, Daniel Fortin, Pierre D. Harvey|2013|Chem.Commun.|49|8848|doi:10.1039/C3CC45284K
CCDC 1047413: Experimental Crystal Structure Determination
Related Article: Michael Knorr, Abderrahim Khatyr, Antony Lapprand, Antoine Bonnot, Carsten Strohmann, Marek M. Kubicki, Yoann Rousselin, Pierre D. Harvey|2015|Inorg.Chem.|54|4076|doi:10.1021/acs.inorgchem.5b00327
CCDC 1047397: Experimental Crystal Structure Determination
Related Article: Michael Knorr, Abderrahim Khatyr, Antony Lapprand, Antoine Bonnot, Carsten Strohmann, Marek M. Kubicki, Yoann Rousselin, Pierre D. Harvey|2015|Inorg.Chem.|54|4076|doi:10.1021/acs.inorgchem.5b00327
CCDC 835275: Experimental Crystal Structure Determination
Related Article: Rodolphe Kinghat, Gérard Schmitt, Kabula Ciamala, Abderrahim Khatyr, Michael Knorr, Sandrine Jacquot-Rousseau, Yoann Rousselin, Marek M. Kubicki|2016|Comptes Rendus Chimie|19|320|doi:10.1016/j.crci.2015.09.017
CCDC 1029335: Experimental Crystal Structure Determination
Related Article: Chourouk Mhiri, Fadwa Rouatbi, Sarra Boudriga, Moheddine Askri, Kabula Ciamala, Michael Knorr, Karin Monnier-Jobé, Abderrahim Khatyr, Yoann Rousselin, Marek M. Kubicki|2015|Mediterranean J.Chem.|4|30|doi:10.13171/mjc.4.1.2015.18.02.09.52/askri