0000000001300252

AUTHOR

Olga Schäfer

showing 17 related works from this author

Combining Orthogonal Reactive Groups in Block Copolymers for Functional Nanoparticle Synthesis in a Single Step.

2017

We report on the synthesis of polysarcosine-block-poly(S-alkylsulfonyl)-l-cysteine block copolymers, which combine three orthogonal addressable groups enabling site-specific conversion of all reactive entities in a single step. The polymers are readily obtained by ring-opening polymerization (ROP) of corresponding α-amino acid N-carboxyanhydrides (NCAs) combining azide and amine chain ends, with a thiol-reactive S-alkylsulfonyl cysteine. Functional group interconversion of chain ends using strain-promoted azide–alkyne cycloaddition (SPAAC) and activated ester chemistry with NHS- and DBCO-containing fluorescent dyes could be readily performed without affecting the cross-linking reaction betw…

chemistry.chemical_classificationPolymers and PlasticsChemistryOrganic ChemistryNanoparticle02 engineering and technologyPolymer010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesCycloaddition0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundPolymerizationPolymer chemistryMaterials ChemistryCopolymerAmine gas treatingAzide0210 nano-technologyRetrosynthetic analysisACS macro letters
researchProduct

Poly(S-ethylsulfonyl-l-cysteines) for Chemoselective Disulfide Formation

2016

The amino acid cysteine possesses a unique role in nature due to its ability to reversibly cross-link proteins. To transfer this feature to polypeptides and control the process of disulfide formation, a protective group needs to provide stability against amines during synthesis, combined with chemoselective reactivity toward thiols. A protective group providing these unique balance of stability and reactivity toward different nucleophiles is the S-alkylsulfonyl group. In this work we report the polymerization of S-ethylsulfonyl-l-cysteine N-carboxyanhydride and kinetic evaluations with respect to temperature (−10, 0, and +10 °C) and monomer concentration. The polymerization degree of poly(S…

chemistry.chemical_classificationPolymers and PlasticsOrganic ChemistryDispersity02 engineering and technologyPolymer010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesAmino acidInorganic Chemistrychemistry.chemical_compoundMonomerchemistryPolymerizationNucleophilePolymer chemistryMaterials ChemistryReactivity (chemistry)0210 nano-technologyCysteineMacromolecules
researchProduct

Rethinking Cysteine Protective Groups:S-Alkylsulfonyl-l-Cysteines for Chemoselective Disulfide Formation

2016

The ability to reversibly cross-link proteins and peptides grants the amino acid cysteine its unique role in nature as well as in peptide chemistry. We report a novel class of S-alkylsulfonyl-l-cysteines and N-carboxy anhydrides (NCA) thereof for peptide synthesis. The S-alkylsulfonyl group is stable against amines and thus enables its use under Fmoc chemistry conditions and the controlled polymerization of the corresponding NCAs yielding well-defined homo- as well as block co-polymers. Yet, thiols react immediately with the S-alkylsulfonyl group forming asymmetric disulfides. Therefore, we introduce the first reactive cysteine derivative for efficient and chemoselective disulfide formation…

Stereochemistry010402 general chemistryCleavage (embryo)01 natural sciencesRing-opening polymerizationCatalysisAnhydridesPolymerizationchemistry.chemical_compoundPeptide synthesisCysteineDisulfidesSulfhydryl CompoundsAmineschemistry.chemical_classification010405 organic chemistryOrganic ChemistryGeneral Chemistry0104 chemical sciencesAmino acidchemistryPolymerizationDrug deliveryPeptidesDerivative (chemistry)CysteineChemistry - A European Journal
researchProduct

Sekundärstrukturbildung als Triebkraft für die Selbstorganisation reaktiver Polypept(o)ide: Steuerung von Größe, Form und Funktion kernvernetzter Nan…

2017

Prazise Kontrolle uber Morphologie und Funktion polymerer Nanostrukturen im Rahmen der Selbstorganisation stellt nach wie vor eine Herausforderung im Feld der Material- und biomedizinischen Wissenschaften dar, insbesondere wenn unabhangige Kontrolle uber einzelne Partikeleigenschaften erwunscht ist. Hier wird uber Sekundarstruktur-gesteuerte Selbstorganisation von Nanostrukturen basierend auf amphiphilen Blockcopolypept(o)iden berichtet und eine Strategie zur bio-reversiblen Einstellung der Kernpolaritat und –funktion unabhangig von der Partikelpraparation vorgestellt. Der Peptiden eigene Prozess der Sekundarstrukturbildung erlaubt so die Herstellung spharischer und wurmartiger kernvernetzt…

010405 organic chemistryGeneral Medicine010402 general chemistry01 natural sciences0104 chemical sciencesAngewandte Chemie
researchProduct

Exploring new activating groups for reactive cysteine NCAs

2016

Abstract Due to its ability to reversibly crosslink proteins, cysteine has a unique role as an amino acid in nature. For controlled, asymmetric formation of disulfides from two thiols, one thiol needs to be activated. While few activating groups for cysteine have been proposed, they are usually not stable against amines making them unsuitable for solid phase peptide synthesis or amine initiated polymerization of α-amino acid-N-carboxy-anhydrides (NCAs). In this Letter we describe a series of new thiol activated cysteines, as well as their NCAs and explore the link between electron deficiency of the leaving group and control over NCA polymerization.

chemistry.chemical_classificationOrganic ChemistryLeaving group02 engineering and technologyElectron deficiency010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesBiochemistryCombinatorial chemistry0104 chemical sciencesAmino acidchemistry.chemical_compoundchemistryPolymerizationDrug DiscoveryThiolPeptide synthesisOrganic chemistryAmine gas treating0210 nano-technologyCysteineTetrahedron Letters
researchProduct

Of Thiols and Disulfides: Methods for Chemoselective Formation of Asymmetric Disulfides in Synthetic Peptides and Polymers.

2018

In protein or peptide chemistry, thiols are frequently chosen as a chemical entity for chemoselective modification reactions. Although it is a well-established methodology to address cysteines and homocysteines in aqueous media to form S-C bonds, possibilities for the chemoselective formation of asymmetric disulfides have been less approached. Focusing on bioreversibility in conjugation chemistry, the formation of disulfide bonds is highly desirable for the attachment of thiol-containing bioactive agents to proteins or in cross-linking reactions, because disulfide bonds can combine stability in blood with degradability inside cells. In this Concept article, recent approaches in the field of…

Free RadicalsPolymersPeptide02 engineering and technologyConjugated system010402 general chemistryMicroscopy Atomic Force01 natural sciencesCatalysisPolymerizationReactivity (chemistry)DisulfidesSulfhydryl CompoundsProtecting groupSolid-Phase Synthesis Techniqueschemistry.chemical_classificationAqueous mediumOrganic ChemistryGeneral ChemistryPolymer021001 nanoscience & nanotechnologyCombinatorial chemistry0104 chemical scienceschemistryThiolQuantum TheorySelf-assembly0210 nano-technologyPeptidesChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

Poly(S-ethylsulfonyl-l-homocysteine): An α-Helical Polypeptide for Chemoselective Disulfide Formation

2018

Homocysteine and cysteine are the only natural occurring amino acids that are capable of disulfide bond formations in peptides and proteins. The chemoselective formation of asymmetric disulfide bonds, however, is chemically challenging and requires an activating group combining stability against hard nucleophiles, e.g., amines, with reactivity toward thiols and soft nucleophiles. In light of these considerations, we introduced the S-alkylsulfonyl cysteines in our previous work. Here, we present the synthesis and ring-opening polymerization of S-ethylsulfonyl-l-homocysteine N-carboxyanhydrides. We demonstrate that the polymerization leads to narrowly distributed polypeptides (Đ = 1.1–1.3) wi…

chemistry.chemical_classificationPolymers and Plastics010405 organic chemistryStereochemistryChemistryOrganic ChemistryPolymerDegree of polymerization010402 general chemistry01 natural sciences0104 chemical sciencesAmino acidInorganic ChemistryNucleophilePolymerizationMaterials ChemistryReactivity (chemistry)SolubilityCysteineMacromolecules
researchProduct

Investigation of α-amino acid N-carboxyanhydrides by X-ray diffraction for controlled ring-opening polymerization

2019

Abstract The need for a scalable synthesis of not sequence defined polypeptides as biomaterials is met by the ring-opening polymerization of α-amino acid N-carboxyanhydrides (NCAs). Even though this polymerization technique appears straight forward, it holds pitfalls in terms of reproducibility and overall control over the polymerization conditions, which depends, beside choice of solvent or initiator, significantly on reagent purity. In addition, the synthesis of monomers can lead to the formation of racemic amino acids. Thus, in this work, we describe the benefits of highly pure monomers in order to control nucleophilic ring-opening polymerization NCAs. Hereby, monomer purity is investiga…

chemistry.chemical_classificationOrganic ChemistrySequence (biology)BiochemistryRing-opening polymerizationAmino acidchemistry.chemical_compoundMonomerchemistryNucleophilePolymerizationReagentDrug DiscoveryX-ray crystallographyPolymer chemistryTetrahedron Letters
researchProduct

Secondary-Structure-Driven Self-Assembly of Reactive Polypept(o)ides: Controlling Size, Shape, and Function of Core Cross-Linked Nanostructures.

2017

Achieving precise control over the morphology and function of polymeric nanostructures during self-assembly remains a challenge in materials as well as biomedical science, especially when independent control over particle properties is desired. Herein, we report on nanostructures derived from amphiphilic block copolypept(o)ides by secondary-structure-directed self-assembly, presenting a strategy to adjust core polarity and function separately from particle preparation in a bioreversible manner. The peptide-inherent process of secondary-structure formation allows for the synthesis of spherical and worm-like core-cross-linked architectures from the same block copolymer, introducing a simple y…

NanostructureMaterials sciencePolarity (physics)Nanotechnology02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesMicelleCatalysis0104 chemical sciencesAmphiphileCopolymerParticleSelf-assembly0210 nano-technologyBlock (data storage)Angewandte Chemie (International ed. in English)
researchProduct

CCDC 1874607: Experimental Crystal Structure Determination

2019

Related Article: Olga Schäfer, Dieter Schollmeyer, Alexander Birke, Regina Holm, Kerstin Johann, Christian Muhl, Christine Seidl, Benjamin Weber, Matthias Barz|2019|Tetrahedron Lett.|60|272|doi:10.1016/j.tetlet.2018.12.028

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates3-methyl-13-oxazolidine-25-dione
researchProduct

CCDC 1874606: Experimental Crystal Structure Determination

2019

Related Article: Olga Schäfer, Dieter Schollmeyer, Alexander Birke, Regina Holm, Kerstin Johann, Christian Muhl, Christine Seidl, Benjamin Weber, Matthias Barz|2019|Tetrahedron Lett.|60|272|doi:10.1016/j.tetlet.2018.12.028

N-epsilon-t-butyloxycarbonyl-L-lysine N-carboxyanhydrideSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1858028: Experimental Crystal Structure Determination

2018

Related Article: Christian Muhl, Olga Schäfer, Tobias Bauer, Hans-Joachim Räder, Matthias Barz|2018|Macromolecules|51|8188|doi:10.1021/acs.macromol.8b01442

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D CoordinatesS-[2-(25-dioxo-13-oxazolidin-4-yl)ethyl] ethanesulfonothioate
researchProduct

CCDC 1440862: Experimental Crystal Structure Determination

2017

Related Article: Olga Schäfer, David Huesmann, Christian Muhl, Matthias Barz|2016|Chem.-Eur.J.|22|18085|doi:10.1002/chem.201604391

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates2-azaniumyl-3-((isopropylsulfonyl)sulfanyl)propanoate
researchProduct

CCDC 1858027: Experimental Crystal Structure Determination

2018

Related Article: Christian Muhl, Olga Schäfer, Tobias Bauer, Hans-Joachim Räder, Matthias Barz|2018|Macromolecules|51|8188|doi:10.1021/acs.macromol.8b01442

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersS-Ethylsulfonyl-L-homocysteineExperimental 3D Coordinates
researchProduct

CCDC 1440861: Experimental Crystal Structure Determination

2017

Related Article: Olga Schäfer, David Huesmann, Christian Muhl, Matthias Barz|2016|Chem.-Eur.J.|22|18085|doi:10.1002/chem.201604391

2-azaniumyl-3-((ethylsulfonyl)sulfanyl)propanoateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1874603: Experimental Crystal Structure Determination

2019

Related Article: Olga Schäfer, Dieter Schollmeyer, Alexander Birke, Regina Holm, Kerstin Johann, Christian Muhl, Christine Seidl, Benjamin Weber, Matthias Barz|2019|Tetrahedron Lett.|60|272|doi:10.1016/j.tetlet.2018.12.028

Space GroupCrystallographyS-[(25-dioxo-13-oxazolidin-4-yl)methyl] ethanesulfonothioateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1874604: Experimental Crystal Structure Determination

2019

Related Article: Olga Schäfer, Dieter Schollmeyer, Alexander Birke, Regina Holm, Kerstin Johann, Christian Muhl, Christine Seidl, Benjamin Weber, Matthias Barz|2019|Tetrahedron Lett.|60|272|doi:10.1016/j.tetlet.2018.12.028

Space GroupCrystallographyCrystal SystemS-[(25-dioxo-13-oxazolidin-4-yl)methyl] propane-2-sulfonothioateCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct