0000000001300602
AUTHOR
Alexandre N. Sobolev
Self-ordering of metallogrid complexes via directed hydrogen-bonding.
Reaction of imidazole aldehydes with dihydrazino derivatives of 2-phenylpyrimidine provides a family of bis(acylhydrazone) ligands which form [2 × 2] metallogrid complexes with transition metal ions including Fe(II), Co(II), Cu(II) and Zn(II). The free ligands show H-bonding interactions, both donor and acceptor, largely involving the imidazole units, while binding of the metal ions occupies all the acceptor sites and leaves only the pyrrolic-NH site as an H-bond donor, although its deprotonation by a strong base can regenerate an acceptor. These H-bonding interactions have been studied by (1)H NMR spectroscopy in solution and in the solid state by means of several crystal structure determi…
Structural and metallo selectivity in the assembly of [2 × 2] grid-type metallosupramolecular species: Mechanisms and kinetic control
An unsymmetrical bis(tridentate) ligand LH in which one binding site can be readily deprotonated forms a kinetically inert [Co(III)L(2)](+) complex which can be used as a "corner" species for the "Coupe du Roi" assembly of trans,trans-[Co(2)M(2)L(4)](6+) metallogrids (M = Fe(II), Co(II), Cu(II), Zn(II)). In the mixed Co(III)/Co(II) species, the oxidation states appear to be localised. In solution, the ligand LH forms octacationic, homometallic [2 × 2] grids with the individual labile metal ions Fe(II), Co(II), Cu(II), Zn(II), seemingly as mixtures of all possible isomers arising from the unsymmetrical nature of the ligand. In the solid state, however, [Zn(4)L(4)](CF(3)SO(3))(8)·4CH(3)CN cry…
Approaching an experimental electron density model of the biologically active trans ‐epoxysuccinyl amide group—Substituent effects vs. crystal packing
The trans-epoxysuccinyl amide group as a biologically active moiety in cysteine protease inhibitors such as loxistatin acid E64c has been used as a benchmark system for theoretical studies of environmental effects on the electron density of small active ingredients in relation to their biological activity. Here, the synthesis and the electronic properties of the smallest possible active site model compound are reported to close the gap between the unknown experimental electron density of trans-epoxysuccinyl amides and the well-known function of related drugs. Intramolecular substituent effects are separated from intermolecular crystal packing effects on the electron density, which allows us…
Electrostatic complementarity in pseudoreceptor modeling based on drug molecule crystal structures: the case of loxistatin acid (E64c)
After a long history of use as a prototype cysteine protease inhibitor, the crystal structure of loxistatin acid (E64c) is finally determined experimentally using intense synchrotron radiation, providing insight into how the inherent electronic nature of this protease inhibitor molecule determines its biochemical activity. Based on the striking similarity of its intermolecular interactions with those observed in a biological environment, the electrostatic potential of crystalline E64c is used to map the characteristics of a pseudo-enzyme pocket.
Vinyl sulfone building blocks in covalently reversible reactions with thiols
In the present study we use quantum-chemical calculations to investigate how the reactivity of vinyl sulfone-based compounds can be modified from an irreversible to a reversible reaction with thiols. Based on the predictions from theory, an array of nine different vinyl sulfones with systematically varying substitution pattern was synthesized and their crystal structures were determined. Subsequent Hirshfeld surface analyses employing the principle of electrostatic complementarity aid the understanding of the crystal packing of the synthesized compounds. Reactivity studies against the nucleophile 2-phenylethanethiol mirror the properties predicted by the quantum-chemical computations in sol…
The Significance of Ionic Bonding in Sulfur Dioxide: Bond Orders from X-ray Diffraction Data
A novel refinement technique for X‐ray diffraction data has been employed to derive S-O bond orders in sulfur dioxide experimentally. The results show that ionic S-O bonding dominates over hypervalency.
Die Bedeutung ionischer Bindungsanteile in Schwefeldioxid - Bindungsordnungen aus Röntgenbeugungsdaten
CCDC 1498221: Experimental Crystal Structure Determination
Related Article: Ming W. Shi, Scott G. Stewart, Alexandre N. Sobolev, Birger Dittrich, Tanja Schirmeister, Peter Luger, Malte Hesse, Yu-Sheng Chen, Peter R. Spackman,Mark A. Spackman, Simon Grabowsky|2017|J.Phys.Org.Chem.|30|e3683|doi:10.1002/poc.3683
CCDC 897063: Experimental Crystal Structure Determination
Related Article: Thomas H. Schneider, Max Rieger, Kay Ansorg, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Simon Grabowsky|2015|New J.Chem.|39|5841|doi:10.1039/C5NJ00368G
CCDC 897056: Experimental Crystal Structure Determination
Related Article: Thomas H. Schneider, Max Rieger, Kay Ansorg, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Simon Grabowsky|2015|New J.Chem.|39|5841|doi:10.1039/C5NJ00368G
CCDC 897057: Experimental Crystal Structure Determination
Related Article: Thomas H. Schneider, Max Rieger, Kay Ansorg, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Simon Grabowsky|2015|New J.Chem.|39|5841|doi:10.1039/C5NJ00368G
CCDC 977799: Experimental Crystal Structure Determination
Related Article: Ming W. Shi, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Thomas C. Schmidt, Peter Luger, Stefan Mebs, Birger Dittrich, Yu-Sheng Chen, Joanna M. Bąk, Dylan Jayatilaka, Charles S. Bond, Michael J. Turner, Scott G. Stewart, Mark A. Spackman and Simon Grabowsky|2015|New J.Chem.|39|1628|doi:10.1039/C4NJ01503G
CCDC 897062: Experimental Crystal Structure Determination
Related Article: Thomas H. Schneider, Max Rieger, Kay Ansorg, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Simon Grabowsky|2015|New J.Chem.|39|5841|doi:10.1039/C5NJ00368G
CCDC 897061: Experimental Crystal Structure Determination
Related Article: Thomas H. Schneider, Max Rieger, Kay Ansorg, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Simon Grabowsky|2015|New J.Chem.|39|5841|doi:10.1039/C5NJ00368G
CCDC 897060: Experimental Crystal Structure Determination
Related Article: Thomas H. Schneider, Max Rieger, Kay Ansorg, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Simon Grabowsky|2015|New J.Chem.|39|5841|doi:10.1039/C5NJ00368G
CCDC 897059: Experimental Crystal Structure Determination
Related Article: Thomas H. Schneider, Max Rieger, Kay Ansorg, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Simon Grabowsky|2015|New J.Chem.|39|5841|doi:10.1039/C5NJ00368G
CCDC 897058: Experimental Crystal Structure Determination
Related Article: Thomas H. Schneider, Max Rieger, Kay Ansorg, Alexandre N. Sobolev, Tanja Schirmeister, Bernd Engels, Simon Grabowsky|2015|New J.Chem.|39|5841|doi:10.1039/C5NJ00368G
CCDC 1498219: Experimental Crystal Structure Determination
Related Article: Ming W. Shi, Scott G. Stewart, Alexandre N. Sobolev, Birger Dittrich, Tanja Schirmeister, Peter Luger, Malte Hesse, Yu-Sheng Chen, Peter R. Spackman,Mark A. Spackman, Simon Grabowsky|2017|J.Phys.Org.Chem.|30|e3683|doi:10.1002/poc.3683
CCDC 1498220: Experimental Crystal Structure Determination
Related Article: Ming W. Shi, Scott G. Stewart, Alexandre N. Sobolev, Birger Dittrich, Tanja Schirmeister, Peter Luger, Malte Hesse, Yu-Sheng Chen, Peter R. Spackman,Mark A. Spackman, Simon Grabowsky|2017|J.Phys.Org.Chem.|30|e3683|doi:10.1002/poc.3683