0000000001301053

AUTHOR

Matteo Savastano

showing 18 related works from this author

Polyfunctional Tetraaza-Macrocyclic Ligands: Zn(II), Cu(II) Binding and Formation of Hybrid Materials with Multiwalled Carbon Nanotubes

2017

The binding properties of HL1, HL2, and HL3 ligands toward Cu(II) and Zn(II) ions, constituted by tetraaza-macrocyclic rings decorated with pyrimidine pendants, were investigated by means of potentiometric and UV spectrophotometric measurements in aqueous solution, with the objective of using the related HL-M(II) (HL = HL1–HL3; M = Cu, Zn) complexes for the preparation of hybrid MWCNT-HL-M(II) materials based on multiwalled carbon nanotubes (MWCNTs), through an environmentally friendly noncovalent procedure. As shown by the crystal structure of [Cu(HL1)](ClO4)2, metal coordination takes place in the macrocyclic ring, whereas the pyrimidine residue remains available for attachment onto the s…

Aqueous solutionMaterials sciencePyrimidine010405 organic chemistryGeneral Chemical EngineeringInorganic chemistryPotentiometric titrationStackingGeneral ChemistryCrystal structure010402 general chemistryRing (chemistry)01 natural sciencesArticle0104 chemical sciencesMetallcsh:Chemistrychemistry.chemical_compoundchemistrylcsh:QD1-999visual_artPolymer chemistryvisual_art.visual_art_mediumHybrid materialcarbon nanotubes copper zinc macrocycles hybrid materials functionalized carbon nanotubesACS Omega
researchProduct

Linear, tripodal, macrocyclic: Ligand geometry and ORR activity of supported Pd(II) complexes

2021

Abstract The novel ligand H3L designed to spontaneously adsorb onto MWCNT via electron-deficient pyrimidine residues and bind metal cations is used to prepare an oxygen reduction reaction (ORR) cathode catalyst based on supported Pd(II) complexes. Herein we report the synthesis of the ligand, its solution behaviour (protonation constants, binding constants for the test cation Cu(II), UV evidence of Cu(II) and Pd(II) complexes formation) and ORR performances together with XPS and STEM characterization. Tripodal nature of the H3L ligand frame it in-between previously studied macrocyclic and linear open chain ligands, allowing to draw meaningful comparisons.

Pyrimidine010405 organic chemistryLigandProtonation010402 general chemistry01 natural sciences0104 chemical sciencesCathode catalystInorganic ChemistryMetalchemistry.chemical_compoundAdsorptionX-ray photoelectron spectroscopychemistryvisual_artPolymer chemistryMaterials Chemistryvisual_art.visual_art_mediumMacrocyclic ligandPhysical and Theoretical ChemistryInorganica Chimica Acta
researchProduct

Inorganic Mercury Sequestration by a Poly(ethylene imine) Dendrimer in Aqueous Solution

2015

The interaction of the G-2 poly(ethylene imine) dendrimer L, derived from ammonia as initiating core, with Hg(II) and HgCl4 2− was studied in aqueous solution by means of potentiometric (pH-metric) measurements. Speciation of these complex systems showed that L is able to form a wide variety of complexes including 1:1, 2:1, 3:1 and 3:2 metal-to-ligand species, of different protonation states, as well as the anion complexes ((H7L)HgCl4) 5+ and ((H8L)HgCl4) 6+ . The stability of the metal complexes is very high, making L an excellent sequestering agent for Hg(II), over a large pH range, and a promising ligand for the preparation of functionalized activated carbons to be employed in the remedi…

mercuryImineInorganic chemistryPotentiometric titrationPharmaceutical Sciencechemistry.chemical_elementProtonationmercury dendrimers sequestration water contamination environmentArticleAnalytical Chemistrydendrimerspoly(ethylene imine)Metallcsh:QD241-441chemistry.chemical_compoundAmmoniacontaminationlcsh:Organic chemistryDendrimerDrug DiscoveryremediationPhysical and Theoretical ChemistryAqueous solutionMolecular StructureOrganic ChemistryMercury (element)chemistryChemistry (miscellaneous)visual_artPotentiometryvisual_art.visual_art_mediumMolecular MedicineEnvironmental PollutantsIminesPolyethylenesMolecules
researchProduct

MWCNTs-Supported Pd(II) Complexes with High Catalytic Efficiency in Oxygen Reduction Reaction in Alkaline Media

2018

We report here the remarkable catalytic efficiency observed for two Pd(II) azamacrocyclic complexes supported on multiwalled carbon nanotubes (MWCNTs) toward oxygen reduction reactions. Beyond a main (90%) 4e

ChemistryPhysical and Theoretical Chemistry; Inorganic Chemistry; fuel cells02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyMultiwalled carbon01 natural sciencesOxygen reduction0104 chemical sciencesInorganic ChemistryChemical engineeringOxygen reduction reactionFuel cellsPhysical and Theoretical ChemistryCatalytic efficiency0210 nano-technology
researchProduct

A New Heterogeneous Catalyst Obtained via Supramolecular Decoration of Graphene with a Pd2+ Azamacrocyclic Complex

2019

A new G-(H2L)-Pd heterogeneous catalyst has been prepared via a self-assembly process consisting in the spontaneous adsorption, in water at room temperature, of a macrocyclic H2L ligand on graphene (G) (G + H2L = G-(H2L)), followed by decoration of the macrocycle with Pd2+ ions (G-(H2L) + Pd2+ = G-(H2L)-Pd) under the same mild conditions. This supramolecular approach is a sustainable (green) procedure that preserves the special characteristics of graphene and furnishes an efficient catalyst for the Cu-free Sonogashira cross coupling reaction between iodobenzene and phenylacetylene. Indeed, G-(H2L)-Pd shows an excellent conversion (90%) of reactants into diphenylacetylene under mild conditio…

Models MolecularChemical PhenomenaIodobenzeneMolecular ConformationPharmaceutical ScienceSonogashira couplingLigands010402 general chemistryHeterogeneous catalysiscross coupling01 natural sciencesArticleCoupling reactionAnalytical Chemistrylaw.inventionCatalysislcsh:QD241-441chemistry.chemical_compoundlcsh:Organic chemistryCoordination ComplexeslawDrug DiscoveryPolymer chemistryPhysical and Theoretical ChemistryDiphenylacetyleneMolecular Structurecatalysis010405 organic chemistryGrapheneSpectrum AnalysisOrganic ChemistrySonogashirapalladium catalystHydrogen-Ion Concentrationsupramolecular interactions0104 chemical sciencesSolutionsazamacrocycleschemistryPhenylacetyleneChemistry (miscellaneous)surface adsorptionMolecular MedicineGraphitecatalysis palladium catalyst; Sonogashira graphenePalladiumMolecules
researchProduct

Assembly of Polyiodide Networks with Cu(II) Complexes of Pyridinol-Based Tetraaza Macrocycles

2022

Polyiodide networks are currently of great practical interest for the preparation of new electronic materials. The participation of metals in the formation of these networks is believed to improve their mechanical performance and thermal stability. Here we report the results on the construction of polyiodide networks obtained using Cu(II) complexes of a series of pyridinol-based tetraazacyclophanes as countercations. The assembly of these crystalline polyiodides takes place from aqueous solutions on the basis of similar structural elements, the [CuL]2+ and [Cu(H–1L)]+ (L = L2, L2-Me, L2-Me3) complex cations, so that the peculiarities induced by the increase of N-methylation of ligands, the …

Inorganic ChemistryQuímicaPhysical and Theoretical ChemistryMaterialsArticle
researchProduct

Construction of green nanostructured heterogeneous catalysts via non-covalent surface decoration of multi-walled carbon nanotubes with Pd(II) complex…

2017

Abstract Green nanostructured heterogeneous catalysts were prepared via a bottom-up strategy. Designed ligands were synthesized joining covalently an electrondeficient pyrimidine residue and a scorpiand azamacrocycle. The desired molecular properties were easily transferred to nanostructured materials in two steps: first, exploiting their spontaneous chemisorption onto multi-walled carbon nanotubes (MWCNTs) via the pyrimidinic moiety in water at room temperature, then, taking advantage of the easy coordination of Pd(II) to the azamacrocycle in the same conditions. An evenly distribution of catalytic centres was obtained on the MWCNTs surface. Catalytic properties of these materials were ass…

ChemistryAzamacrocycles Hybrid materials Multi-walled carbon nanotubes Non-covalent functionalization Palladium(II) catalysis Sonogashira cross coupling CatalysisSonogashira coupling02 engineering and technologyCarbon nanotube010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesCatalysis0104 chemical scienceslaw.inventionCatalysisResidue (chemistry)Chemical engineeringlawCovalent bondChemisorptionMoietyOrganic chemistryPhysical and Theoretical Chemistry0210 nano-technologyHybrid material
researchProduct

Stabilisation of Exotic Tribromide (Br3−) Anions via Supramolecular Interaction with A Tosylated Macrocyclic Pyridinophane. A Serendipitous Case.

2020

Tetraaza-macrocyclic pyridinophane L-Ts, decorated with a p-toluenesulfonyl (tosyl

crystal structureStackingSupramolecular chemistryPharmaceutical ScienceCrystal structureAnalytical Chemistrylcsh:QD241-441symbols.namesakechemistry.chemical_compoundlcsh:Organic chemistryTosylDrug DiscoveryPyridineHirshfeld surface analysisPhysical and Theoretical ChemistryN-heterocyclesanion- interactionsTribromideHydrogen bondOrganic Chemistryanion complexesCrystallographychemistryChemistry (miscellaneous)symbolsMolecular Medicinevan der Waals forceMolecules
researchProduct

Stabilization of polyiodide networks with Cu(ii) complexes of small methylated polyazacyclophanes: shifting directional control from H-bonds to I⋯I i…

2020

Ordered polyiodide networks have recently gathered considerable attention as electronic materials, a topic historically dominated by metals. Could we incorporate metal cations into polyiodide frameworks in a controlled manner to simultaneously boost electronic properties and robustness of these materials? Herein we present a first principles study featuring three analogous polyazacyclophanes (L, L-Me, L-Me3), differing only in the extent of N-methylation. We demonstrate (potentiometry, ITC) how they all form the same CuL2+ (L = L, L-Me, L-Me3) complex as prevalent species in solution, so that a level playing field exists where only N-methylation distinguishes them. Then we use them as count…

Inorganic ChemistryMetalPolyiodidechemistry.chemical_compoundMaterials sciencechemistryRobustness (computer science)Chemical physicsvisual_artPairingvisual_art.visual_art_mediumElectronic materialsElectronic propertiesInorganic Chemistry Frontiers
researchProduct

CCDC 2062422: Experimental Crystal Structure Determination

2021

Related Article: Álvaro Martínez-Camarena, Matteo Savastano, Salvador Blasco, Estefanía Delgado-Pinar, Claudia Giorgi, Antonio Bianchi, Enrique García-España, Carla Bazzicalupi|2022|Inorg.Chem.|61|368|doi:10.1021/acs.inorgchem.1c02967

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[(mu-369-trimethyl-36915-tetraazabicyclo[9.3.1]pentadeca-1(15)1113-trien-13-olato)-copper(ii) perchlorate hemihydrate]Experimental 3D Coordinates
researchProduct

CCDC 2094998: Experimental Crystal Structure Determination

2021

Related Article: Álvaro Martínez-Camarena, Matteo Savastano, Salvador Blasco, Estefanía Delgado-Pinar, Claudia Giorgi, Antonio Bianchi, Enrique García-España, Carla Bazzicalupi|2022|Inorg.Chem.|61|368|doi:10.1021/acs.inorgchem.1c02967

Space GroupCrystallographyCrystal System(mu-369-trimethyl-36915-tetraazabicyclo[9.3.1]pentadeca-1(15)1113-trien-13-olato)-(369-trimethyl-36915-tetraazabicyclo[9.3.1]pentadeca-1(15)1113-trien-13-ol)-iodo-iodine-di-copper(ii) pentaiodide triiodide bis(iodine)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2017310: Experimental Crystal Structure Determination

2020

Related Article: Álvaro Martínez-Camarena, Matteo Savastano, José M. Llinares, Begoña Verdejo, Antonio Bianchi, Enrique García-España, Carla Bazzicalupi|2020|Inorg.Chem.Front.|7|4239|doi:10.1039/D0QI00912A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersiodo-[6-methyl-36915-tetraazabicyclo[9.3.1]pentadeca-1(15)1113-triene]-copper heptaiodideExperimental 3D Coordinates
researchProduct

CCDC 2010176: Experimental Crystal Structure Determination

2021

Related Article: ��lvaro Mart��nez-Camarena, Matteo Savastano, Carla Bazzicalupi, Antonio Bianchi, Enrique Garc��a-Espa��a|2020|Molecules|25|3155|doi:10.3390/molecules25143155

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates6-(4-methylbenzene-1-sulfonyl)-36915-tetraazabicyclo[9.3.1]pentadeca-1(15)1113-triene-39-diium sesquikis(tribromide) hemikis(nitrate)
researchProduct

CCDC 2094997: Experimental Crystal Structure Determination

2021

Related Article: Álvaro Martínez-Camarena, Matteo Savastano, Salvador Blasco, Estefanía Delgado-Pinar, Claudia Giorgi, Antonio Bianchi, Enrique García-España, Carla Bazzicalupi|2022|Inorg.Chem.|61|368|doi:10.1021/acs.inorgchem.1c02967

Space GroupCrystallographyCrystal SystemCrystal Structure[mu-6-methyl-36915-tetraazabicyclo[9.3.1]pentadeca-1(15)1113-trien-13-olato]-[6-methyl-36915-tetraazabicyclo[9.3.1]pentadeca-1(15)1113-trien-13-ol]-iodo-di-copper(ii) [mu-6-methyl-36915-tetraazabicyclo[9.3.1]pentadeca-1(15)1113-trien-13-olato]-[6-methyl-36915-tetraazabicyclo[9.3.1]pentadeca-1(15)1113-trien-13-ol]-triiodide-di-copper(ii) tetrakis(pentaiodide) bis(iodine )Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2017311: Experimental Crystal Structure Determination

2020

Related Article: Álvaro Martínez-Camarena, Matteo Savastano, José M. Llinares, Begoña Verdejo, Antonio Bianchi, Enrique García-España, Carla Bazzicalupi|2020|Inorg.Chem.Front.|7|4239|doi:10.1039/D0QI00912A

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(369-trimethyl-36915-tetraazabicyclo[9.3.1]pentadeca-1(15)1113-triene)-(tri-iodide)-copper penta-iodideExperimental 3D Coordinates
researchProduct

CCDC 2017309: Experimental Crystal Structure Determination

2020

Related Article: Álvaro Martínez-Camarena, Matteo Savastano, José M. Llinares, Begoña Verdejo, Antonio Bianchi, Enrique García-España, Carla Bazzicalupi|2020|Inorg.Chem.Front.|7|4239|doi:10.1039/D0QI00912A

Space GroupCrystallographyCrystal SystemCrystal Structure(36915-tetraazabicyclo[9.3.1]pentadeca-1(15)1113-triene)-iodo-copper(ii) tri-iodideCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1553257: Experimental Crystal Structure Determination

2017

Related Article: Matteo Savastano, Paloma Arranz-Mascaros, ́Carla Bazzicalupi, Maria Paz Clares, Maria Luz Godino-Salido, Lluis Guijarro, Maria Dolores Gutierrez-Valero, ́Antonio Bianchi, Enrique García-España, Rafael Lopez-Garzon|2017|ACS Omega|2|3868|doi:10.1021/acsomega.7b00736

Space GroupCrystallographycatena-[(mu-6-amino-3-methyl-5-nitroso-2-({2-[36915-tetraazabicyclo[9.3.1]pentadeca-1(15)1113-trien-6-yl]ethyl}amino)pyrimidin-4(3H)-one)-copper(ii) diperchlorate]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2062421: Experimental Crystal Structure Determination

2021

Related Article: Álvaro Martínez-Camarena, Matteo Savastano, Salvador Blasco, Estefanía Delgado-Pinar, Claudia Giorgi, Antonio Bianchi, Enrique García-España, Carla Bazzicalupi|2022|Inorg.Chem.|61|368|doi:10.1021/acs.inorgchem.1c02967

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-[bis(mu-6-methyl-36915-tetraazabicyclo[9.3.1]pentadeca-1(15)1113-trien-13-olato)-di-copper(ii) bis(perchlorate) hydrate]Cell ParametersExperimental 3D Coordinates
researchProduct