0000000001301365

AUTHOR

Sebastian Sakowski

showing 7 related works from this author

Biomolecular computers with multiple restriction enzymes

2017

Abstract The development of conventional, silicon-based computers has several limitations, including some related to the Heisenberg uncertainty principle and the von Neumann “bottleneck”. Biomolecular computers based on DNA and proteins are largely free of these disadvantages and, along with quantum computers, are reasonable alternatives to their conventional counterparts in some applications. The idea of a DNA computer proposed by Ehud Shapiro’s group at the Weizmann Institute of Science was developed using one restriction enzyme as hardware and DNA fragments (the transition molecules) as software and input/output signals. This computer represented a two-state two-symbol finite automaton t…

0301 basic medicineTheoretical computer scienceDNA computerlcsh:QH426-4700102 computer and information sciencesBiology01 natural scienceslaw.inventionrestriction enzymesGenomics and Bioinformatics03 medical and health sciencessymbols.namesakeSoftwareDNA computinglawGeneticsNondeterministic finite automatonMolecular BiologyQuantum computerFinite-state machinebusiness.industryConstruct (python library)bioinformaticsDNARestriction enzymelcsh:Genetics030104 developmental biology010201 computation theory & mathematicssymbolsbusinessVon Neumann architectureGenetics and Molecular Biology
researchProduct

Arithmetical Analysis of Biomolecular Finite Automaton

2013

In the paper we present a theoretical analysis of extension of the finite automaton built on DNA (introduced by the Shapiro team) to an arbitrary number of states and symbols. In the implementation we use a new idea of several restriction enzymes instead of one. We give arithmetical conditions for the existence of such extensions in terms of ingredients used in the implementation.

Algebra and Number TheoryContinuous automatonPushdown automatonBüchi automatonBiomolecular computerTheoretical Computer ScienceDNA automatonDNA computingAlgebraElementary cellular automatonDeterministic finite automatonComputational Theory and MathematicsDeterministic automatonProbabilistic automatonTwo-way deterministic finite automatonInformation SystemsMathematicsFundamenta Informaticae
researchProduct

DNA Computing: Concepts for Medical Applications

2022

The branch of informatics that deals with construction and operation of computers built of DNA, is one of the research directions which investigates issues related to the use of DNA as hardware and software. This concept assumes the use of DNA computers due to their biological origin mainly for intelligent, personalized and targeted diagnostics frequently related to therapy. Important elements of this concept are (1) the retrieval of unique DNA sequences using machine learning methods and, based on the results of this process, (2) the construction/design of smart diagnostic biochip projects. The authors of this paper propose a new concept of designing diagnostic biochips, the key elements o…

Fluid Flow and Transfer Processesmachine learning; DNA computer; biochips; queue automata; type IIB endonucleasesProcess Chemistry and TechnologyGeneral EngineeringGeneral Materials ScienceInstrumentationComputer Science ApplicationsApplied Sciences-Basel
researchProduct

Theory of tailor automata

2019

Abstract In the paper, a fragment of the new theory of tailor automata is presented, within which a deterministic finite automaton was defined. The proposed automaton provides a theoretical model of an informally characterized biomolecular automaton. The idea of working of which is founded on the concept of alternating cut of some double-stranded fragments of DNA, with the use of a restriction enzyme and ligations of some double-stranded fragments of DNA, with the use of the ligase enzyme.

Discrete mathematicschemistry.chemical_classificationQuantitative Biology::BiomoleculesDNA ligaseGeneral Computer ScienceComputer scienceQuantitative Biology::Molecular Networks0102 computer and information sciences02 engineering and technologyDNA automatonBiomolecular computerDNA computingNonlinear Sciences::Cellular Automata and Lattice Gases01 natural sciencesTheoretical Computer ScienceAutomatonRestriction enzymeDeterministic finite automatonFragment (logic)chemistry010201 computation theory & mathematics0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingComputer Science::Formal Languages and Automata TheoryTheoretical Computer Science
researchProduct

A detailed experimental study of a DNA computer with two endonucleases

2017

Abstract Great advances in biotechnology have allowed the construction of a computer from DNA. One of the proposed solutions is a biomolecular finite automaton, a simple two-state DNA computer without memory, which was presented by Ehud Shapiro’s group at the Weizmann Institute of Science. The main problem with this computer, in which biomolecules carry out logical operations, is its complexity – increasing the number of states of biomolecular automata. In this study, we constructed (in laboratory conditions) a six-state DNA computer that uses two endonucleases (e.g. AcuI and BbvI) and a ligase. We have presented a detailed experimental verification of its feasibility. We described the effe…

0301 basic medicineTheoretical computer scienceDNA LigasesComputer scienceCarry (arithmetic)Oligonucleotides0102 computer and information sciencesBioinformatics01 natural sciencesGeneral Biochemistry Genetics and Molecular Biologylaw.inventionAutomationComputers Molecular03 medical and health sciencesDNA computinglawA-DNADeoxyribonucleases Type II Site-Specificchemistry.chemical_classificationDNA ligaseFinite-state machineBase Sequencebiomolecular computers; DNA computing; finite automataProcess (computing)DNAModels TheoreticalEndonucleasesAutomaton030104 developmental biologychemistry010201 computation theory & mathematicsWord (computer architecture)Zeitschrift für Naturforschung C
researchProduct

A Solution to the Problem of the Maximal Number of Symbols for Biomolecular Computer

2019

The authors present a solution to the problem of generating the maximum possible number of symbols for a biomolecular computer using restriction enzyme BbvI and ligase as the hardware, and transition molecules built of double-stranded DNA as the software. The presented solution offers an answer to the open question, in the algorithm form, of the maximal number of symbols for a biomolecular computer that makes use of the restriction enzyme BbvI.

chemistry.chemical_classificationDNA ligaseComputer sciencebusiness.industrybiomolecular systemsbiomolecular computerComputer Science ApplicationsTheoretical Computer ScienceDNA computingRestriction enzymeSoftwarechemistryArtificial IntelligencebusinessAlgorithmSoftwareInformatica
researchProduct

Biomolecular computers with multiple restriction enzymes

2017

Abstract The development of conventional, silicon-based computers has several limitations, including some related to the Heisenberg uncertainty principle and the von Neumann “bottleneck”. Biomolecular computers based on DNA and proteins are largely free of these disadvantages and, along with quantum computers, are reasonable alternatives to their conventional counterparts in some applications. The idea of a DNA computer proposed by Ehud Shapiro’s group at the Weizmann Institute of Science was developed using one restriction enzyme as hardware and DNA fragments (the transition molecules) as software and input/output signals. This computer represented a two-state two-symbol finite automaton t…

researchProduct