0000000001301461

AUTHOR

Hendrik V. Schröder

showing 28 related works from this author

Strong Emission Enhancement in pH-Responsive 2:2 Cucurbit[8]uril Complexes

2019

Organic fluorophores, particularly stimuli-responsive molecules, are very interesting for biological and material sciences applications, but frequently limited by aggregation- and rotation-caused photoluminescence quenching. A series of easily accessible bipyridinium fluorophores, whose emission is quenched by a twisted intramolecular charge-transfer (TICT) mechanism, is reported. Encapsulation in a cucurbit[7]uril host gave a 1:1 complex exhibiting a moderate emission increase due to destabilization of the TICT state inside the apolar cucurbituril cavity. A much stronger fluorescence enhancement is observed in 2:2 complexes with the larger cucurbit[8]uril, which is caused by additional con…

Charge transferLuminescenceintramolecular motioncucurbiturilsluminesenssihost–guest systemsfluoresenssisupramolekulaarinen kemiafluorescence enhancementBiological materialsFluorophores
researchProduct

Evaluation of multivalency as an organization principle for the efficient synthesis of doubly and triply threaded amide rotaxanes

2014

Mono-, di- and trivalent pseudorotaxanes with tetralactam macrocycle hosts and axles containing diamide binding stations as the guests have been synthesised. Their threading behaviour was analyzed in detail by NMR experiments and isothermal titration calorimetry. An X-ray crystal structure of the monovalent pseudorotaxane confirms the binding motif. Double mutant cycle analysis provides the effective molarities and insight into the chelate cooperativity of multivalent binding. While the second binding event in a trivalent pseudorotaxane exhibits a slightly positive cooperativity, the third binding is nearly non-cooperative. Nevertheless, the enhanced binding affinities resulting from the mu…

RotaxaneTandemStereochemistryOrganic ChemistryCooperative bindingIsothermal titration calorimetryCooperativityNuclear magnetic resonance spectroscopyCrystal structure540Crystallographychemistry.chemical_compoundchemistryAmideta116Organic Chemistry Frontiers: an international journal of organic chemistry
researchProduct

An aryl-fused redox-active tetrathiafulvalene with enhanced mixed-valence and radical-cation dimer stabilities.

2018

Molecular recognition of stable organic radicals is a relatively novel, but important structural binding motif in supramolecular chemistry. Here, we report on a redox-switchable veratrole-fused tetrathiafulvalene derivative VTTF which is ideally suited for this purpose and for the incorporation into stimuli-responsive systems. As revealed by electrochemistry, UV/Vis measurements, X-ray analysis, and electrocrystallisation, VTTF can be reversibly oxidised to the corresponding radical-cation or dication which shows optoelectronic and structural propterties similar to tetrathiafulvalene and tetrakis(methylthio)tetrathiafulvalene. However, theoretical calculations, variable temperature EPR, and…

010405 organic chemistryChemistryArylDimerRadicalOrganic ChemistrySupramolecular chemistry010402 general chemistry01 natural sciencesBiochemistrysupramolecular chemistry0104 chemical scienceslaw.inventionDicationchemistry.chemical_compoundCrystallographyRadical ionlawsupramolekulaarinen kemiaPhysical and Theoretical ChemistryElectron paramagnetic resonanceta116TetrathiafulvaleneOrganicbiomolecular chemistry
researchProduct

Redox-Responsive Host–Guest Chemistry of a Flexible Cage with Naphthalene Walls

2020

"Naphthocage", a naphthalene-based organic cage, reveals very strong binding (up to 1010 M-1) to aromatic (di)cationic guests, i.e., the tetrathiafulvalene mono- and dication and methyl viologen. Intercalation of the guests between two naphthalene walls is mediated by C-H···O, C-H···π, and cation···π interactions. The guests can be switched into and out of the cage by redox processes with high binding selectivity. Oxidation of the flexible cage itself in the absence of a guest leads to a stable radical cation with the oxidized naphthalene intercalated between and stabilized by the other two. Encapsulated guest cations are released from the cavity upon cage oxidation, paving the way to futur…

Intercalation (chemistry)Cationic polymerizationmacromolecular substancesGeneral Chemistry010402 general chemistry01 natural sciencesBiochemistryRedoxCatalysis0104 chemical sciencesDicationchemistry.chemical_compoundColloid and Surface ChemistrychemistryRadical ionPolymer chemistryHost–guest chemistryTetrathiafulvaleneNaphthaleneJournal of the American Chemical Society
researchProduct

Dual-stimuli pseudorotaxane switches under kinetic control

2021

A series of dumbbell-shaped sec-ammonium salts with bulky (pseudo)stoppers (‘speed bumps’) were tested for their ability to form pseudorotaxanes with a redox-switchable, tetrathiafulvalene (TTF)-decorated [24]crown-8 ether. Depending on the size of the pseudostoppers, fast (less than ten minutes), slow (hours to days) and very slow (no pseudorotaxanes observed) threading has been observed. NMR spectroscopy as well as tandem mass spectrometry indicate the formation of non-threaded face-to-face complexes prior to pseudorotaxanes formation. Both isomers can be distinguished by their substantially different stability in collision-induced dissociation (CID) experiments. Two external stimuli affe…

Steric effectsMechanical bond010405 organic chemistryOrganic ChemistryEtherNuclear magnetic resonance spectroscopy547010402 general chemistry01 natural sciencesDissociation (chemistry)pseudostoppers0104 chemical scienceschemistry.chemical_compoundCrystallographyDeprotonationchemistrysec-ammonium salts500 Naturwissenschaften und Mathematik::540 Chemie::547 Organische ChemieMoietyTetrathiafulvalenepseudorotaxanes
researchProduct

Thermodynamic and electrochemical study of tailor-made crown ethers for redox-switchable (pseudo)rotaxanes

2020

Crown ethers are common building blocks in supramolecular chemistry and are frequently applied as cation sensors or as subunits in synthetic molecular machines. Developing switchable and specifically designed crown ethers enables the implementation of function into molecular assemblies. Seven tailor-made redox-active crown ethers incorporating tetrathiafulvalene (TTF) or naphthalene diimide (NDI) as redox-switchable building blocks are described with regard to their potential to form redox-switchable rotaxanes. A combination of isothermal titration calorimetry and voltammetric techniques reveals correlations between the binding energies and redox-switching properties of the corresponding ps…

RotaxaneSupramolecular chemistryElectrochemistryRedoxFull Research Papersupramolecular chemistrylcsh:QD241-441chemistry.chemical_compoundlcsh:Organic chemistryComputational chemistryredox chemistrysupramolekulaarinen kemialcsh:ScienceCrown etherchemistry.chemical_classificationOrganic ChemistryIsothermal titration calorimetry540Molecular machineisothermal titration calorimetryChemistryrotaxaneschemistrycrown etherlcsh:Q500 Naturwissenschaften und Mathematik::540 Chemie::540 Chemie und zugeordnete WissenschaftenTetrathiafulvaleneBeilstein Journal of Organic Chemistry
researchProduct

Heads or Tails? Sandwich-Type Metallo Complexes of Hexakis(2,3-di-O-methyl)-α-cyclodextrin

2020

Native and synthetically modified cyclodextrins (CDs) are useful building blocks in the construction of large coordination complexes and porous materials with various applications. Sandwich-type co...

chemistry.chemical_classificationMaterials scienceCyclodextrin010405 organic chemistryGeneral ChemistryCrystal structure010402 general chemistryCondensed Matter Physics01 natural sciences3. Good health0104 chemical sciencesSandwich typeCrystallographychemistryX-ray crystallographyGeneral Materials SciencePorous mediumCrystal Growth & Design
researchProduct

Chiroptical inversion of a planar chiral redox-switchable rotaxane.

2019

Reversible redox-switching of a planar chiral [2]rotaxane with a tetrathiafulvalene-bearing crown ether macrocycle generates a complete sign reversal of the main band in the ECD spectrum, as shown by experiment and rationalised by DFT calculations.

chemistry.chemical_classificationMaterials scienceRotaxane010405 organic chemistryGeneral Chemistry547Planar chirality010402 general chemistryElectrochemistry01 natural sciences0104 chemical sciencesChiral column chromatographyCrystallographychemistry.chemical_compoundChemistry500 Naturwissenschaften und Mathematik::540 Chemie::547 Organische Chemieredox-switchablechemistryElectronic effectrotaxanechiroptical inversionEnantiomermakromolekyylitTetrathiafulvaleneCrown etherChemical science
researchProduct

Strong Emission Enhancement in pH‐Responsive 2:2 Cucurbit[8]uril Complexes

2019

Organic fluorophores, particularly stimuli-responsive molecules, are very interesting for biological and material sciences applications, but frequently limited by aggregation- and rotation-caused photoluminescence quenching. A series of easily accessible bipyridinium fluorophores, whose emission is quenched by a twisted intramolecular charge-transfer (TICT) mechanism, is reported. Encapsulation in a cucurbit[7]uril host gave a 1:1 complex exhibiting a moderate emission increase due to destabilization of the TICT state inside the apolar cucurbituril cavity. A much stronger fluorescence enhancement is observed in 2:2 complexes with the larger cucurbit[8]uril, which is caused by additional con…

Supramolecular chemistry010402 general chemistryPhotochemistry01 natural sciencesCatalysischemistry.chemical_compoundCucurbiturilsupramolekulaarinen kemialuminescenceMoleculePhotoluminescence quenchingta116intramolecular motioncucurbiturils010405 organic chemistryChemistryArylhost–guest systemsOrganic Chemistryfluoresenssifluorescence enhancementGeneral ChemistryFluorescence0104 chemical sciences3. Good healthIntramolecular forceLuminescenceChemistry – A European Journal
researchProduct

Heads or Tails? Sandwich-Type Metallocomplexes of Hexakis(2,3-di-O-methyl)-α-cyclodextrin

2020

Native and synthetically modified cyclodextrins (CDs) are useful building blocks in construction of large coordination complexes and porous materials with various applications. Sandwich-type complexes (STCs) are one of the important groups in this area. Usually, coordination of secondary hydroxyls or the “head” portal of native CD molecules to a notional multinuclear ring of metal cations leads to formation of head-to-head STCs. Our study introduces a new CD-ligand, hexakis(2,3-di-O-methyl)-α-cyclodextrin, which enables formation of intriguing head-to-head, but also novel tail-to-tail STCs. Homometallic silver-based head-to-head STCs, AgPF6-STC and AgClO4-STC, were obtained by coordination …

metal-organic materialrubidiumcyclodextrinsilversandwich-type complexX-ray crystallography
researchProduct

Redox-Responsive Host-Guest Chemistry of a Flexible Cage with Naphthalene Walls

2020

“Naphthocage”, a naphthalene-based organic cage, reveals very strong binding (up to 1010 M–1) to aromatic (di)cationic guests, i.e., the tetrathiafulvalene mono- and dication and methyl viologen. Intercalation of the guests between two naphthalene walls is mediated by C–H···O, C–H···π, and cation···π interactions. The guests can be switched into and out of the cage by redox processes with high binding selectivity. Oxidation of the flexible cage itself in the absence of a guest leads to a stable radical cation with the oxidized naphthalene intercalated between and stabilized by the other two. Encapsulated guest cations are released from the cavity upon cage oxidation, paving the way to futur…

aromatic compundsaromaattiset yhdisteethapetusredox reactionskationitpelkistysmacromolecular substanceshydrocarbonshapetus-pelkistysreaktiooxidation cationsredox-reaktiohiilivedyt
researchProduct

CCDC 1910670: Experimental Crystal Structure Determination

2019

Related Article: Marius Gaedke, Felix Witte, Jana Anhäuser, Henrik Hupatz, Hendrik V. Schröder, Arto Valkonen, Kari Rissanen, Arne Lützen, Beate Paulus, Christoph A. Schalley |2019|Chemical Science|10|10003|doi:10.1039/C9SC03694F

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates2-[45-bis(methylsulfanyl)-2H-13-dithiol-2-ylidene]-56891112141517182728-dodecahydro-2H-[13]dithiolo[45-t]naphtho[23-b][1471013161922]hexaoxadithiacyclotetracosine
researchProduct

CCDC 1899328: Experimental Crystal Structure Determination

2020

Related Article: Ondřej Jurček, Rakesh Puttreddy, Filip Topić, Pia Jurček, Pezhman Zarabadi-Poor, Hendrik V. Schröder, Radek Marek, Kari Rissanen|2020|Cryst.Growth Des.|20|4193|doi:10.1021/acs.cgd.0c00532

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[bis(mu-hexakis(23-O-methyl)-alpha-cyclodextrin)-dodecakis(mu-fluoro)-bis(mu-methanol)-hexakis(methanol)-hexa-aqua-dodeca-rubidium unknown solvate]Experimental 3D Coordinates
researchProduct

CCDC 1957981: Experimental Crystal Structure Determination

2020

Related Article: Fei Jia, Hendrik V. Schröder, Liu-Pan Yang, Carolina von Essen, Sebastian Sobottka, Biprajit Sarkar, Kari Rissanen, Wei Jiang, Christoph A. Schalley|2020|J.Am.Chem.Soc.|142|3306|doi:10.1021/jacs.9b11685

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters11'-dimethyl-44'-bipyridin-1-ium 81529364754-hexabutoxy-22123425960-hexaethyl-51826394457-hexaoxadecacyclo[20.20.16.1341.12024.0712.01116.02833.03237.04651.05055]hexaconta-13(59)7911131520(60)21232830323436414648505254-henicosaene bis(hexafluorophosphate)Experimental 3D Coordinates
researchProduct

CCDC 938974: Experimental Crystal Structure Determination

2014

Related Article: Lena Kaufmann, Nora L. Traulsen, Andreas Springer, Hendrik V. Schröder, Toni Mäkelä, Kari Rissanen, Christoph A. Schalley|2014|Org.Chem.Front.|1|521|doi:10.1039/C4QO00077C

N-(2-(hexanoyl(methyl)amino)ethyl)-N-methylbenzamide 11'-iodo-5'17'23'35'38'40'43'45'-octamethyl-7'15'25'33'39'-pentaazadispiro[cyclohexane-12'-heptacyclo[32.2.2.2^36^.2^1619^.2^2124^.1^913^.1^2731^]hexatetracontane-20'1''-cyclohexane]-1'(36')3'5'9'(44')10'12'16'18'21'23'27'(39')28'30'34'37'40'42'45'-octadecaene-8'14'26'32'-tetroneSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1867147: Experimental Crystal Structure Determination

2019

Related Article: Stefan Schoder, Hendrik V. Schröder, Luca Cera, Rakesh Puttreddy, Arne Güttler, Ute Resch‐Genger, Kari Rissanen, Christoph A. Schalley|2019|Chem.-Eur.J.|25|3257|doi:10.1002/chem.201806337

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterssodium 1-([11'-biphenyl]-4-yl)-44'-bipyridin-1-ium 1-([11'-biphenyl]-4-yl)-4-(pyridin-4-yl)pyridin-1-ium bis(cucurbit[8]uril) tetrakis(chloride) octacosahydrateExperimental 3D Coordinates
researchProduct

CCDC 1959539: Experimental Crystal Structure Determination

2020

Related Article: Ondřej Jurček, Rakesh Puttreddy, Filip Topić, Pia Jurček, Pezhman Zarabadi-Poor, Hendrik V. Schröder, Radek Marek, Kari Rissanen|2020|Cryst.Growth Des.|20|4193|doi:10.1021/acs.cgd.0c00532

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersdibromo-(mu-hexakis(23-O-methyl)-alpha-cyclodextrin)-zinc diethyl ether methanol unknown solvateExperimental 3D Coordinates
researchProduct

CCDC 1581480: Experimental Crystal Structure Determination

2018

Related Article: Hendrik V. Schröder, Felix Witte, Marius Gaedke, Sebastian Sobottka, Lisa Suntrup, Henrik Hupatz, Arto Valkonen, Beate Paulus, Kari Rissanen, Biprajit Sarkar, Christoph A. Schalley|2018|Org.Biomol.Chem.|16|2741|doi:10.1039/C8OB00415C

2-(67-dimethoxy-2H-[13]dithiolo[45-b][14]benzodithiin-2-ylidene)-45-bis(methylsulfanyl)-2H-13-dithiole-13-diium bis(tetrafluoroborate)Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1867144: Experimental Crystal Structure Determination

2019

Related Article: Stefan Schoder, Hendrik V. Schröder, Luca Cera, Rakesh Puttreddy, Arne Güttler, Ute Resch‐Genger, Kari Rissanen, Christoph A. Schalley|2019|Chem.-Eur.J.|25|3257|doi:10.1002/chem.201806337

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters1-([11'-biphenyl]-4-yl)-44'-bipyridin-1-ium bis(perchlorate)Experimental 3D Coordinates
researchProduct

CCDC 1899329: Experimental Crystal Structure Determination

2020

Related Article: Ondřej Jurček, Rakesh Puttreddy, Filip Topić, Pia Jurček, Pezhman Zarabadi-Poor, Hendrik V. Schröder, Radek Marek, Kari Rissanen|2020|Cryst.Growth Des.|20|4193|doi:10.1021/acs.cgd.0c00532

bis(mu-hexakis(23-di-O-methyl)-alpha-cyclodextrin)-hexakis(mu-aqua)-nona-silver nona-hexafluorophosphate unknown solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1899330: Experimental Crystal Structure Determination

2020

Related Article: Ondřej Jurček, Rakesh Puttreddy, Filip Topić, Pia Jurček, Pezhman Zarabadi-Poor, Hendrik V. Schröder, Radek Marek, Kari Rissanen|2020|Cryst.Growth Des.|20|4193|doi:10.1021/acs.cgd.0c00532

Space GroupCrystallographydodeca-silver dodecakis(perchlorate) bis((313233343536373839404142-dodecamethoxy-24791214171922242729-dodecaoxaheptacyclo[26.2.2.236.2811.21316.21821.22326]dotetracontane-51015202530-hexayl)hexamethanol) hexacosahydrateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1867143: Experimental Crystal Structure Determination

2019

Related Article: Stefan Schoder, Hendrik V. Schröder, Luca Cera, Rakesh Puttreddy, Arne Güttler, Ute Resch‐Genger, Kari Rissanen, Christoph A. Schalley|2019|Chem.-Eur.J.|25|3257|doi:10.1002/chem.201806337

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters1-([11'-biphenyl]-4-yl)-4-(pyridin-4-yl)pyridin-1-ium tetrafluoroborate methanol solvateExperimental 3D Coordinates
researchProduct

CCDC 1899331: Experimental Crystal Structure Determination

2020

Related Article: Ondřej Jurček, Rakesh Puttreddy, Filip Topić, Pia Jurček, Pezhman Zarabadi-Poor, Hendrik V. Schröder, Radek Marek, Kari Rissanen|2020|Cryst.Growth Des.|20|4193|doi:10.1021/acs.cgd.0c00532

catena-[triaqua-(mu-hexakis(23-O-methyl)-alpha-cyclodextrin)-silver tetrafluoroborate unknown solvate tetrahydrate]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1867145: Experimental Crystal Structure Determination

2019

Related Article: Stefan Schoder, Hendrik V. Schröder, Luca Cera, Rakesh Puttreddy, Arne Güttler, Ute Resch‐Genger, Kari Rissanen, Christoph A. Schalley|2019|Chem.-Eur.J.|25|3257|doi:10.1002/chem.201806337

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters1-([11'-biphenyl]-4-yl)-44'-bipyridin-1-ium dinitrateExperimental 3D Coordinates
researchProduct

CCDC 1867146: Experimental Crystal Structure Determination

2019

Related Article: Stefan Schoder, Hendrik V. Schröder, Luca Cera, Rakesh Puttreddy, Arne Güttler, Ute Resch‐Genger, Kari Rissanen, Christoph A. Schalley|2019|Chem.-Eur.J.|25|3257|doi:10.1002/chem.201806337

Space GroupCrystallographyCrystal SystemCrystal Structure1-([11'-biphenyl]-4-yl)-1'-ethyl-44'-bipyridin-1-ium bis(chloride) hexahydrateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1867142: Experimental Crystal Structure Determination

2019

Related Article: Stefan Schoder, Hendrik V. Schröder, Luca Cera, Rakesh Puttreddy, Arne Güttler, Ute Resch‐Genger, Kari Rissanen, Christoph A. Schalley|2019|Chem.-Eur.J.|25|3257|doi:10.1002/chem.201806337

Space GroupCrystallography1-([11'-biphenyl]-4-yl)-4-(pyridin-4-yl)pyridin-1-ium trifluoromethanesulfonateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2073308: Experimental Crystal Structure Determination

2021

Related Article: Marius Gaedke, Henrik Hupatz, Hendrik V. Schröder, Simon Suhr, Kurt F. Hoffmann, Arto Valkonen, Biprajit Sarkar, Sebastian Riedel, Kari Rissanen, Christoph A. Schalley|2021|Org.Chem.Front.|8|3659|doi:10.1039/D1QO00503K

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates2-[45-bis(methylsulfanyl)-2H-13-dithiol-2-ylidene]-56891112212224252728-dodecahydro-2H-[13]dithiolo[45-t]naphtho[23-h][1471013161922]hexaoxadithiacyclotetracosine
researchProduct

CCDC 1586984: Experimental Crystal Structure Determination

2018

Related Article: Hendrik V. Schröder, Felix Witte, Marius Gaedke, Sebastian Sobottka, Lisa Suntrup, Henrik Hupatz, Arto Valkonen, Beate Paulus, Kari Rissanen, Biprajit Sarkar, Christoph A. Schalley|2018|Org.Biomol.Chem.|16|2741|doi:10.1039/C8OB00415C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters2-[45-bis(methylsulfanyl)-2H-13-dithiol-2-ylidene]-67-dimethoxy-2H-[13]dithiolo[45-b][14]benzodithiineExperimental 3D Coordinates
researchProduct