0000000001301667

AUTHOR

Xin Ding

showing 22 related works from this author

A Novel Halogen Bond Acceptor : 1-(4-Pyridyl)-4-Thiopyridine (PTP) Zwitterion

2020

Sulfur is a widely used halogen bond (XB) acceptor, but only a limited number of neutral XB acceptors with bifurcated sp3-S sites have been reported. In this work a new bidentate XB acceptor, 1-(4-pyridyl)-4-thiopyridine (PTP), which combines sp3-S and sp2-N acceptor sites, is introduced. Three halogen bonded cocrystals were obtained by using 1,4-diiodobenzene (DIB), 1,4-diiodotetrafluorobenzene (DIFB), and iodopentafluorobenzene (IPFB) as XB donors and PTP as acceptor. The structures of the cocrystals showed some XB selectivity between the S and N donors in PTP. However, the limited contribution of XB to the overall molecular packing in these three cocrystals and the results from DSC measu…

kemialliset sidoksethalogen bonds (xb)rikkiyhdisteetlcsh:QD901-999selectivitylcsh:CrystallographyacceptorcocrystalskiteetHalogen bonds (XB)orgaaniset yhdisteet
researchProduct

Halogen bond preferences of thiocyanate ligand coordinated to Ru(II) via sulphur atom

2017

Halogen bonding between [Ru(bpy)(CO)2(S-SCN)2] (bpy = 2,2’-bipyridine), I2 was studied by co-crystallising the metal compound and diiodine from dichloromethane. The only observed crystalline product was found to be [Ru(bpy)(CO)2(S-SCN)2]⋅I2 with only one NCS⋅⋅⋅I2 halogen bond between I2 and the metal coordinated S atom of one of the thiocyanate ligand. The dangling nitrogen atoms were not involved in halogen bonding. However, computational analysis suggests that there are no major energetic differences between the NCS⋅⋅⋅I2 and SCN⋅⋅⋅I2 bonding modes. The reason for the observed NCS⋅⋅⋅I2 mode lies most probably in the more favourable packing effects rather than energetic preferences between …

chemistry.chemical_element010402 general chemistryPhotochemistry01 natural sciencesjodiMetalchemistry.chemical_compoundAtomhalogensGeneral Materials Scienceta116DichloromethanethiocyanateHalogen bondhalogeenitThiocyanateiodine010405 organic chemistryLigandRuGeneral ChemistryCondensed Matter PhysicsSulfurNitrogen3. Good health0104 chemical sciencesCrystallographychemistryvisual_arthalogeenisidoksetvisual_art.visual_art_mediumhalogen bondIodineSolid State Sciences
researchProduct

Fine-tuning halogen bonding properties of diiodine through halogen–halogen charge transfer – extended [Ru(2,2′-bipyridine)(CO)2X2]·I2 systems (X = Cl…

2016

The current paper introduces the use of carbonyl containing ruthenium complexes, [Ru(bpy)(CO)2X2] (X = Cl, Br, I), as halogen bond acceptors for a I2 halogen bond donor. In all structures, the metal coordinated halogenido ligand acts as the actual halogen bond acceptor. Diiodine, I2, molecules are connected to the metal complexes through both ends of the molecule forming bridges between the complexes. Due to the charge transfer from Ru–X to I2, formation of the first Ru–X⋯I2 contact tends to generate a negative charge on I2 and redistribute the electron density anisotropically. If the initial Ru–X⋯IA–IB interaction causes a notable change in the electron density of I2, the increased negativ…

Halogen bond010405 organic chemistryChemistryLigandchemistry.chemical_elementCharge densityGeneral Chemistry010402 general chemistryCondensed Matter PhysicsPhotochemistry01 natural sciencesAcceptor22'-Bipyridine0104 chemical sciencesRutheniumCrystallographychemistry.chemical_compoundhalogen bondingHalogenruthenium complexesMoleculeGeneral Materials Scienceta116CrystEngComm
researchProduct

Influence of Substituents in the Aromatic Ring on the Strength of Halogen Bonding in Iodobenzene Derivatives

2020

Halogen bonding properties of 3,4,5-triiodobenzoic acid (1, 2), 1,2,3-triiodobenzene (3), pentaiodobenzoic acid ethanol solvate (4), hexaiodobenzene (5a, 5b, 5c), 2,4-diiodoaniline (6), 4-iodoaniline (7), 2-iodoaniline (8), 2-iodophenol (9), 4-iodophenol (10), 3-iodophenol (11) and 2,4,6-triiodophenol (12) has been studied. The results suggested that substituents other than halogen in aromatic ring affect XB properties of iodine substituents in ortho-, meta- and para-positions. The effect depends on the electron-withdrawing/electron-donating properties of the substituent. Thus, electron-withdrawing substituents with negative mesomeric effect favor m-iodines to act as XB donors and o- and p-…

Halogen bond010405 organic chemistryIodobenzeneSubstituentGeneral ChemistryMesomeric effect010402 general chemistryCondensed Matter PhysicsRing (chemistry)01 natural sciencesMedicinal chemistryHexaiodobenzene0104 chemical scienceschemistry.chemical_compoundchemistryHalogenGeneral Materials ScienceCrystal Growth & Design
researchProduct

The Se … Hal halogen bonding: Co-crystals of selenoureas with fluorinated organohalides

2021

Abstract Synthesis and structural characterization of binary co-crystals 1–4 is reported in the present paper. Selenourea and 1,1-dimethylselenourea were used as selenium-containing halogen bond (XB) acceptors and iodopentafluorobenzene (IPFB), 1,4-diiodotetrafluorobenzene (1,4-DIFB) and 1,4-dibromotetrafluorobenzene (1,4-DBrFB) as XB donors. A comparative analysis of the similar binary co-crystals of selenourea and thiourea with a halogen donor revealed that Se … Hal halogen bonds are up to 13.12% shorter than the sum of vdW radii, while in case of S … Hal halogen bonds this value is 11.4%. Therefore, selenium tends to form stronger bonds with halogens than sulfur does. Comparisons of XB i…

Halogen bondSelenoureachemistry.chemical_element02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesAcceptorSulfur0104 chemical sciencesElectronic Optical and Magnetic MaterialsInorganic ChemistryCrystallographychemistry.chemical_compoundchemistryThioureaHalogenMaterials ChemistryCeramics and CompositesPhysical and Theoretical Chemistry0210 nano-technologySeleniumJournal of Solid State Chemistry
researchProduct

Extended Assemblies of Ru(bpy)(CO)2X2 (X = Cl, Br, I) Molecules Linked by 1,4-Diiodotetrafluoro-Benzene (DITFB) Halogen Bond Donors

2019

The ruthenium carbonyl compounds, Ru(bpy)(CO)2X2 (X = Cl, Br or I) act as neutral halogen bond (XB) acceptors when co-crystallized with 1,4-diiodotetrafluoro-benzene (DITFB). The halogen bonding strength of the Ru-X&sdot

kemialliset sidoksetcrystal structurebipyridinelcsh:QD901-999halogen bondcarbonyllcsh:CrystallographyorganometalliyhdisteetkiteetrutheniumCrystals
researchProduct

Influence of substituents in aromatic ring on the strength of halogen bonding in iodobenzene derivatives

2020

Halogen bonding properties of 3,4,5-triiodobenzoic acid (1, 2), 1,2,3-triiodobenzene (3), pentaiodobenzoic acid ethanol solvate (4), hexaiodobenzene (5a, 5b, 5c), 2,4-diiodoaniline (6), 4-iodoaniline (7), 2-iodoaniline (8), 2-iodophenol (9), 4-iodophenol (10), 3-iodophenol (11) and 2,4,6-triiodophenol (12) has been studied. The results suggested that substituents other than halogen in aromatic ring affect XB properties of iodine substituents in ortho-, meta- and para-positions. The effect depends on the electron-withdrawing/electron-donating properties of the substituent. Thus, electron-withdrawing substituents with negative mesomeric effect favor m-iodines to act as XB donors and o- and p-…

kemialliset sidoksethalogeenit
researchProduct

CCDC 1009210: Experimental Crystal Structure Determination

2016

Related Article: Xin Ding, Matti J. Tuikka, Pipsa Hirva, Vadim Yu. Kukushkin, Alexander S. Novikov, Matti Haukka|2016|CrystEngComm|18|1987|doi:10.1039/C5CE02396C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(22'-bipyridine)-dicarbonyl-bis(triiodane)-rutheniumExperimental 3D Coordinates
researchProduct

CCDC 2011890: Experimental Crystal Structure Determination

2020

Related Article: Maria V. Chernysheva, Margarita Bulatova, Xin Ding, Matti Haukka|2020|Cryst.Growth Des.|20|7197|doi:10.1021/acs.cgd.0c00866

Space GroupCrystallographyCrystal System345-triiodobenzoic acidCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1009213: Experimental Crystal Structure Determination

2016

Related Article: Xin Ding, Matti J. Tuikka, Pipsa Hirva, Vadim Yu. Kukushkin, Alexander S. Novikov, Matti Haukka|2016|CrystEngComm|18|1987|doi:10.1039/C5CE02396C

Space GroupCrystallographyCrystal SystemCrystal Structure(22'-bipyridine)-dicarbonyl-dichloro-ruthenium dichloromethane solvateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1009209: Experimental Crystal Structure Determination

2016

Related Article: Xin Ding, Matti J. Tuikka, Pipsa Hirva, Vadim Yu. Kukushkin, Alexander S. Novikov, Matti Haukka|2016|CrystEngComm|18|1987|doi:10.1039/C5CE02396C

Space GroupCrystallography(22'-bipyridine)-dibromo-dicarbonyl-ruthenium iodine chloroform solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1009215: Experimental Crystal Structure Determination

2016

Related Article: Xin Ding, Matti J. Tuikka, Pipsa Hirva, Vadim Yu. Kukushkin, Alexander S. Novikov, Matti Haukka|2016|CrystEngComm|18|1987|doi:10.1039/C5CE02396C

Space GroupCrystallography(22'-bipyridine)-dicarbonyl-diiodo-rutheniumCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2039960: Experimental Crystal Structure Determination

2021

Related Article: Maria V. Chernysheva, J. Mikko Rautiainen, Xin Ding, Matti Haukka|2021|J.Solid State Chem.|295|121930|doi:10.1016/j.jssc.2020.121930

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersNN-dimethylselenourea 12345-pentafluoro-6-iodobenzeneExperimental 3D Coordinates
researchProduct

CCDC 1009214: Experimental Crystal Structure Determination

2016

Related Article: Xin Ding, Matti J. Tuikka, Pipsa Hirva, Vadim Yu. Kukushkin, Alexander S. Novikov, Matti Haukka|2016|CrystEngComm|18|1987|doi:10.1039/C5CE02396C

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates(22'-bipyridine)-dibromo-dicarbonyl-ruthenium
researchProduct

CCDC 2039961: Experimental Crystal Structure Determination

2021

Related Article: Maria V. Chernysheva, J. Mikko Rautiainen, Xin Ding, Matti Haukka|2021|J.Solid State Chem.|295|121930|doi:10.1016/j.jssc.2020.121930

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersNN-dimethylselenourea 14-dibromo-2356-tetrafluorobenzeneExperimental 3D Coordinates
researchProduct

CCDC 1524888: Experimental Crystal Structure Determination

2017

Related Article: Xin Ding, Matti Tuikka, Pipsa Hirva, Matti Haukka|2017|Solid State Sciences|71|8|doi:10.1016/j.solidstatesciences.2017.06.016

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(22'-bipyridine)-(dicarbonyl)-bis(thiocyanato)-ruthenium iodineExperimental 3D Coordinates
researchProduct

CCDC 1009208: Experimental Crystal Structure Determination

2016

Related Article: Xin Ding, Matti J. Tuikka, Pipsa Hirva, Vadim Yu. Kukushkin, Alexander S. Novikov, Matti Haukka|2016|CrystEngComm|18|1987|doi:10.1039/C5CE02396C

Space GroupCrystallography(22'-bipyridine)-dicarbonyl-dichloro-ruthenium hemikis(iodine)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1009211: Experimental Crystal Structure Determination

2016

Related Article: Xin Ding, Matti J. Tuikka, Pipsa Hirva, Vadim Yu. Kukushkin, Alexander S. Novikov, Matti Haukka|2016|CrystEngComm|18|1987|doi:10.1039/C5CE02396C

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters(22'-bipyridine)-dicarbonyl-diiodo-ruthenium iodineExperimental 3D Coordinates
researchProduct

CCDC 2039958: Experimental Crystal Structure Determination

2021

Related Article: Maria V. Chernysheva, J. Mikko Rautiainen, Xin Ding, Matti Haukka|2021|J.Solid State Chem.|295|121930|doi:10.1016/j.jssc.2020.121930

Space GroupCrystallographyselenourea 1245-tetrafluoro-36-diiodobenzeneCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2011891: Experimental Crystal Structure Determination

2020

Related Article: Maria V. Chernysheva, Margarita Bulatova, Xin Ding, Matti Haukka|2020|Cryst.Growth Des.|20|7197|doi:10.1021/acs.cgd.0c00866

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates345-triiodobenzoic acid ethanol solvate
researchProduct

CCDC 2039959: Experimental Crystal Structure Determination

2021

Related Article: Maria V. Chernysheva, J. Mikko Rautiainen, Xin Ding, Matti Haukka|2021|J.Solid State Chem.|295|121930|doi:10.1016/j.jssc.2020.121930

Space GroupCrystallographyCrystal Systembis(NN-dimethylselenourea) 1245-tetrafluoro-36-diiodobenzeneCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1009212: Experimental Crystal Structure Determination

2016

Related Article: Xin Ding, Matti J. Tuikka, Pipsa Hirva, Vadim Yu. Kukushkin, Alexander S. Novikov, Matti Haukka|2016|CrystEngComm|18|1987|doi:10.1039/C5CE02396C

Space GroupCrystallography(22'-bipyridine)-dibromo-dicarbonyl-ruthenium iodine chloroform solvateCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct