0000000001301902
AUTHOR
Liāna Orola
Solvates of Dasatinib: Diversity and Isostructurality
A series of dasatinib crystalline forms were obtained, and a hierarchical cluster analysis of their powder X-ray diffraction patterns was performed. The resulting dendrogram implies 3 structural groups. The crystal structures of several solvates representing 2 of these groups were determined. The crystal structure analysis confirms the isostructurality of solvates within structural group I and suggests a correlation between solvent molecule size and trends in crystal structures within this group. In addition, the formation relationships in 2-solvent media between different dasatinib solvate groups were determined. The formation preference of solvates was found to follow the ranking group I …
Droperidola kristālisko formu iegūšana un struktūra
Darbā ir noteikta droperidola x un z modifikācijas kristāliskā struktūra, izmantojot monokristāla rentgenstruktūranalīzi. Droperidola x modifikācijas kristāli pieder pie triklīnās singonijas: Pī; a=6,2842(15) Å; b=10,1473(8) Å; c=16,1850(2) Å; α=102,554(9) º; β=91,917(14) º; γ=99,316(12) º; V=991,6(3) Å3; Z=2; ρc=1,30 g/cm3; λ(Cu Kα)=1,5418 Å; μ=0,760 mm-1, R=0,045. Droperidola z modifikācija kristalizējas monoklīnā singonijā: P21/c; a=20,0406(8) Å; b=7,4955(4) Å; c=12,9733(5) Å; β=98,089(2) º; V=1929,39(15) Å3; Z=4; ρc=1,306 g/cm3; λ(Mo Kα)=0,71073 Å; μ=0,092 cm-1, R=0,048. Abu modifikāciju molekulas veido divas N–HņņņO ūdeņraža saites.
Protonation of Tyrosine Kinase Inhibitor Lapatinib: A Theoretical and Experimental Study
The protonation process of tyrosine kinase inhibitor lapatinib was studied by means of 1HNMR and UV/Vis spectroscopy joint with the theoretical calculations at DFT and semi-empirical levels. DFT/M06-2X geometries were used to describe and compare the different cationic forms of lapatinib, while ZINDO/S-CI method performed on those geometries allowed for the interpretation of experimental UV/Vis spectra of lapatinib at various pH. We found that at low pH two different dicationic forms (N2N1 and N1N3) of lapatinib were present in ethanol and DMSO-d6 solutions. The first protonation, however, occurred on the aliphatic N1 in DMSO-d6, while in ethanol solutions most probably the quinazoline nitr…
Characterization of Pigments from <i>Malus domestica</i> Leaves for Wool Dyeing
The study will present results of chemical analysis of mass spectrometry, evaluating the content of pigments in M. domestica leaves dyeing solution and in dyed woollen yarn nowadays. Yarn was dyed with fresh leaves of M. domestica tree. Before dyeing the yarn was treated with potassium aluminium sulphate mordant. Dyestuffs from the yarn were extracted in compliance with modified hydrochloric method of hydrolysis. Extracts were analysed by ultra high-performance liquid chromatography coupled with a diode array detector and mass spectrometry (UHPLC-DAD-MS) for identification of the pigments. Phytochemical screening of dyeing solution of the M. domestica leaves showed presence of dihydrochalco…
Crystallographic Study of Solvates and Solvate Hydrates of an Antibacterial Furazidin
In this study we present a detailed crystallographic analysis of multiple solvates of an antibacterial furazidin. Solvate formation of furazidin was investigated by crystallizing it from pure solvents and solvent-water mixtures. Crystal structure analysis of the obtained solvates and computational calculations were used to rationalize the main factors leading to the intermolecular interactions present in the solvate crystal structures as well as resulting in formation of the observed solvates and solvate hydrates. Furazidin forms pure solvates and solvate hydrates with solvents having large hydrogen bond acceptor propensity as well as with a hydrogen bond donor and acceptor formic acid. In …
CCDC 2122147: Experimental Crystal Structure Determination
Related Article: Liāna Orola, Anatoly Mishnev, Dmitrijs Stepanovs, Agris Bērziņš|2022|ChemRxiv|||doi:10.26434/chemrxiv-2022-rb0xk
CCDC 2121374: Experimental Crystal Structure Determination
Related Article: Liāna Orola, Anatoly Mishnev, Dmitrijs Stepanovs, Agris Bērziņš|2022|ChemRxiv|||doi:10.26434/chemrxiv-2022-rb0xk
CCDC 1420813: Experimental Crystal Structure Determination
Related Article: Inese Sarceviča, IlzeGrante, Sergey Belyakov, Toms Rekis, Kārlis Bērziņš, Andris Actiņš, Liāna Orola|2016|J.Pharm.Sci.|105|1489|doi:10.1016/j.xphs.2016.01.024
CCDC 2122145: Experimental Crystal Structure Determination
Related Article: Liāna Orola, Anatoly Mishnev, Dmitrijs Stepanovs, Agris Bērziņš|2022|ChemRxiv|||doi:10.26434/chemrxiv-2022-rb0xk
CCDC 1420812: Experimental Crystal Structure Determination
Related Article: Inese Sarceviča, IlzeGrante, Sergey Belyakov, Toms Rekis, Kārlis Bērziņš, Andris Actiņš, Liāna Orola|2016|J.Pharm.Sci.|105|1489|doi:10.1016/j.xphs.2016.01.024
CCDC 1420811: Experimental Crystal Structure Determination
Related Article: Inese Sarceviča, IlzeGrante, Sergey Belyakov, Toms Rekis, Kārlis Bērziņš, Andris Actiņš, Liāna Orola|2016|J.Pharm.Sci.|105|1489|doi:10.1016/j.xphs.2016.01.024
CCDC 1420810: Experimental Crystal Structure Determination
Related Article: Inese Sarceviča, IlzeGrante, Sergey Belyakov, Toms Rekis, Kārlis Bērziņš, Andris Actiņš, Liāna Orola|2016|J.Pharm.Sci.|105|1489|doi:10.1016/j.xphs.2016.01.024
CCDC 2122135: Experimental Crystal Structure Determination
Related Article: Liāna Orola, Anatoly Mishnev, Dmitrijs Stepanovs, Agris Bērziņš|2022|ChemRxiv|||doi:10.26434/chemrxiv-2022-rb0xk
CCDC 2122164: Experimental Crystal Structure Determination
Related Article: Liāna Orola, Anatoly Mishnev, Dmitrijs Stepanovs, Agris Bērziņš|2022|ChemRxiv|||doi:10.26434/chemrxiv-2022-rb0xk
CCDC 928882: Experimental Crystal Structure Determination
Related Article: Liāna Orola, Anatoly Mishnev, Dmitrijs Stepanovs, Agris Bērziņš|2022|ChemRxiv|||doi:10.26434/chemrxiv-2022-rb0xk
CCDC 1420814: Experimental Crystal Structure Determination
Related Article: Inese Sarceviča, IlzeGrante, Sergey Belyakov, Toms Rekis, Kārlis Bērziņš, Andris Actiņš, Liāna Orola|2016|J.Pharm.Sci.|105|1489|doi:10.1016/j.xphs.2016.01.024
CCDC 922708: Experimental Crystal Structure Determination
Related Article: Liāna Orola, Anatoly Mishnev, Dmitrijs Stepanovs, Agris Bērziņš|2022|ChemRxiv|||doi:10.26434/chemrxiv-2022-rb0xk
CCDC 2122176: Experimental Crystal Structure Determination
Related Article: Liāna Orola, Anatoly Mishnev, Dmitrijs Stepanovs, Agris Bērziņš|2022|ChemRxiv|||doi:10.26434/chemrxiv-2022-rb0xk
CCDC 1420809: Experimental Crystal Structure Determination
Related Article: Inese Sarceviča, IlzeGrante, Sergey Belyakov, Toms Rekis, Kārlis Bērziņš, Andris Actiņš, Liāna Orola|2016|J.Pharm.Sci.|105|1489|doi:10.1016/j.xphs.2016.01.024
CCDC 1420807: Experimental Crystal Structure Determination
Related Article: Inese Sarceviča, IlzeGrante, Sergey Belyakov, Toms Rekis, Kārlis Bērziņš, Andris Actiņš, Liāna Orola|2016|J.Pharm.Sci.|105|1489|doi:10.1016/j.xphs.2016.01.024
CCDC 922164: Experimental Crystal Structure Determination
Related Article: Liāna Orola, Anatoly Mishnev, Dmitrijs Stepanovs, Agris Bērziņš|2022|ChemRxiv|||doi:10.26434/chemrxiv-2022-rb0xk
CCDC 1420808: Experimental Crystal Structure Determination
Related Article: Inese Sarceviča, IlzeGrante, Sergey Belyakov, Toms Rekis, Kārlis Bērziņš, Andris Actiņš, Liāna Orola|2016|J.Pharm.Sci.|105|1489|doi:10.1016/j.xphs.2016.01.024
CCDC 2121392: Experimental Crystal Structure Determination
Related Article: Liāna Orola, Anatoly Mishnev, Dmitrijs Stepanovs, Agris Bērziņš|2022|ChemRxiv|||doi:10.26434/chemrxiv-2022-rb0xk