0000000001301959
AUTHOR
Pia Bonakdarzadeh
Superchiral Pd 3 L 6 Coordination Complex and Its Reversible Structural Conversion into Pd 3 L 3 Cl 6 Metallocycles
Large, non-symmetrical, inherently chiral bispyridyl ligand L derived from natural ursodeoxycholic bile acid was used for square-planar coordination of tetravalent Pd(II) , yielding the cationic single enantiomer of superchiral coordination complex 1 Pd3 L6 containing 60 well-defined chiral centers in its flower-like structure. Complex 1 can readily be transformed by addition of chloride into a smaller enantiomerically pure cyclic trimer 2 Pd3 L3 Cl6 containing 30 chiral centers. This transformation is reversible and can be restored by the addition of silver cations. Furthermore, a mixture of two constitutional isomers of trimer, 2 and 2', and dimer, 3 and 3', can be obtained directly from …
Self-Assembly of M24L48 Polyhedra Based on Empirical Prediction
Spontaneous Resolution of an Electron‐Deficient Tetrahedral Fe4L4cage
A highly electron-deficient C3-symmetric tris(bipyridyl) ligand was prepared in four steps and used for the coordination of Fe(OTf)2, thereby resulting in the homochiral assembly of a new family of robust tetrahedral M4L4 cages. This homochiral T-symmetric cage containing a relatively large cavity of 330 A(3) is capable of encapsulating an anionic guest, as was determined by mass spectrometry, (19)F NMR spectroscopy, and finally shown from its crystal structure. Moreover, crystallization of the cage from CH3CN led to crystals containing both (ΔΔΔΔ and ΛΛΛΛ) enantiomers, while crystallization from CH3 OH resulted in crystals containing only the right-handed (ΔΔΔΔ) cage. The difference in the…
DOSY NMR, X-ray Structural and Ion-Mobility Mass Spectrometric Studies on Electron-Deficient and Electron-Rich M6L4 Coordination Cages.
A novel modular approach to electron-deficient and electron-rich M6L4 cages is presented. From the same starting compound, via a minor modulation of the synthesis route, two C3-symmetric ligands L1 and L2 with different electronic properties are obtained in good yield. The trifluoro-triethynylbenzene-based ligand L1 is more electron-deficient than the well-known 2,4,6-tri(4-pyridyl)-1,3,5-triazine, while the trimethoxy-triethynylbenzene-based ligand L2 is more electron-rich than the corresponding benzene analogue. Complexation of the ligands with cis-protected square-planar [(dppp)Pt(OTf)2] or [(dppp)Pd(OTf)2] corner-complexes yields two electron-deficient (1a and 1b) and two electron-rich …
CCDC 1062272: Experimental Crystal Structure Determination
Related Article: Pia Bonakdarzadeh, Filip Topić, Elina Kalenius, Sandip Bhowmik, Sota Sato, Michael Groessl, Richard Knochenmuss, Kari Rissanen|2015|Inorg.Chem.|54|6055|doi:10.1021/acs.inorgchem.5b01082
CCDC 1407136: Experimental Crystal Structure Determination
Related Article: Pia Bonakdarzadeh, Fangfang Pan, Elina Kalenius, Ondřej Jurček, Kari Rissanen|2015|Angew.Chem.,Int.Ed.|54|14890|doi:10.1002/anie.201507295
CCDC 1062271: Experimental Crystal Structure Determination
Related Article: Pia Bonakdarzadeh, Filip Topić, Elina Kalenius, Sandip Bhowmik, Sota Sato, Michael Groessl, Richard Knochenmuss, Kari Rissanen|2015|Inorg.Chem.|54|6055|doi:10.1021/acs.inorgchem.5b01082
CCDC 1407137: Experimental Crystal Structure Determination
Related Article: Pia Bonakdarzadeh, Fangfang Pan, Elina Kalenius, Ondřej Jurček, Kari Rissanen|2015|Angew.Chem.,Int.Ed.|54|14890|doi:10.1002/anie.201507295
CCDC 1062270: Experimental Crystal Structure Determination
Related Article: Pia Bonakdarzadeh, Filip Topić, Elina Kalenius, Sandip Bhowmik, Sota Sato, Michael Groessl, Richard Knochenmuss, Kari Rissanen|2015|Inorg.Chem.|54|6055|doi:10.1021/acs.inorgchem.5b01082