0000000001301988

AUTHOR

Olesia I. Kucheriv

showing 12 related works from this author

Crystal structure of a low-spin poly[di-μ3-cyanido-di-μ2-cyanido-bis(μ2-2-ethylpyrazine)dicopper(I)iron(II)]

2019

In the title metal–organic framework, [Fe(C6H8N2)2{Cu(CN)2}2] n , the low-spin FeII ion lies at an inversion centre and displays an elongated octahedral [FeN6] coordination environment. The axial positions are occupied by two symmetry-related bridging 2-ethylpyrazine ligands, while the equatorial positions are occupied by four N atoms of two pairs of symmetry-related cyanide groups. The CuI centre is coordinated by three cyanide carbon atoms and one N atom of a bridging 2-ethylpyrazine molecule, which form a tetrahedral coordination environment. Two neighbouring Cu atoms have a short Cu...Cu contact [2.4662 (7) Å] and their coordination tetrahedra are connected through a common edge between…

crystal structurePyrazineCyanide02 engineering and technologyCrystal structure010402 general chemistry01 natural sciencesIonmetal–organic frameworkchemistry.chemical_compoundAtomGeneral Materials ScienceBimetallic stripCrystallographyChemistryGeneral Chemistrydicyanocuprate021001 nanoscience & nanotechnologyCondensed Matter Physicsiron(II)0104 chemical sciencescopper(I)CrystallographybimetallicQD901-999Metal-organic frameworkethylpyrazine0210 nano-technologyActa Crystallographica Section E: Crystallographic Communications
researchProduct

Hofmann-Like Frameworks Fe(2-methylpyrazine)n[M(CN)2]2 (M = Au, Ag) : Spin-Crossover Defined by the Precious Metal

2020

Hofmann-like cyanometalates constitute a large class of spin-crossover iron(II) complexes with variable switching properties. However, it is not yet clearly understood how the temperature and cooperativity of a spin transition are influenced by their structure. In this paper, we report the synthesis and crystal structures of the metal–organic coordination polymers {FeII(Mepz)[AuI(CN)2]2} ([Au]) and {FeII(Mepz)2[AgI(CN)2]2} ([Ag]), where Mepz = 2-methylpyrazine, along with characterization of their spin-state behavior by variable-temperature SQUID magnetometry and Mössbauer spectroscopy. The compounds are built of cyanoheterometallic layers, which are pillared by the bridging Mepz…

chemistry.chemical_classificationLarge classOorganisk kemi010405 organic chemistryIronSpin transitionCooperativityPolymerCrystal structureAtmospheric temperature range010402 general chemistrySpin crossover01 natural sciences0104 chemical sciencesInorganic ChemistryCrystallographychemistrySpin crossovermagnetismMössbauer spectroscopyPhysical and Theoretical ChemistryMOF
researchProduct

Enantioselective Guest Effect on the Spin State of a Chiral Coordination Framework

2015

The diversity of spin crossover (SCO) complexes that, on the one hand, display variable temperature, abruptness and hysteresis of the spin transition, and on the other hand, are spin-sensitive to the various guest molecules, makes these materials unique for the detection of different organic and inorganic compounds. We have developed a homochiral SCO coordination polymer with a spin transition sensitive to the inclusion of the guest 2-butanol, and these solvates with (R)- and (S)-alcohols demonstrate different SCO behaviours depending on the chirality of the organic analyte. A stereoselective response to the guest inclusion is detected as a shift in the temperature of the transition both fr…

Spin statesChemistryStereochemistryCoordination polymerOrganic ChemistryEnantioselective synthesisSpin transitionGeneral ChemistryCatalysisCrystallographychemistry.chemical_compoundSpin crossoverDiamagnetismMoleculeChirality (chemistry)Chemistry - A European Journal
researchProduct

Spin Crossover in Fe(II)–M(II) Cyanoheterobimetallic Frameworks (M = Ni, Pd, Pt) with 2-Substituted Pyrazines

2016

Discovery of spin-crossover (SCO) behavior in the family of Fe(II)-based Hofmann clathrates has led to a "new rush" in the field of bistable molecular materials. To date this class of SCO complexes is represented by several dozens of individual compounds, and areas of their potential application steadily increase. Starting from Fe(2+), square planar tetracyanometalates M(II)(CN)4(2-) (M(II) = Ni, Pd, Pt) and 2-substituted pyrazines Xpz (X = Cl, Me, I) as coligands we obtained a series of nine new Hofmann clathrate-like coordination frameworks. X-ray diffraction reveals that in these complexes Fe(II) ion has a pseudo-octahedral coordination environment supported by four μ4-tetracyanometallat…

tetracyanometalates010405 organic chemistryChemistryStereochemistrypyrazines010402 general chemistry01 natural sciences0104 chemical sciences3. Good healthIonInorganic Chemistrycoordination polymersCrystallographySpin crossoverspin-crossoverMoleculePhysical and Theoretical ChemistryMolecular materialsta116Inorganic Chemistry
researchProduct

CCDC 1480686: Experimental Crystal Structure Determination

2016

Related Article: Olesia I. Kucheriv, Sergii I. Shylin, Vadim Ksenofontov, Sebastian Dechert, Matti Haukka, Igor O. Fritsky, and Il’ya A. Gural’skiy|2016|Inorg.Chem.|55|4906|doi:10.1021/acs.inorgchem.6b00446

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetrakis(mu2-Cyano)-aqua-(2-iodopyrazine)-iron-palladium]Experimental 3D Coordinates
researchProduct

CCDC 1986756: Experimental Crystal Structure Determination

2020

Related Article: Sergii I. Shylin, Olesia I. Kucheriv, Sergiu Shova, Vadim Ksenofontov, Wolfgang Tremel, Il’ya A. Gural’skiy|2020|Inorg.Chem.|59|6541|doi:10.1021/acs.inorgchem.0c00627

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tetrakis(mu-cyano)-bis(2-methylpyrazine)-iron(ii)-di-silver(i)]Experimental 3D Coordinates
researchProduct

CCDC 1480684: Experimental Crystal Structure Determination

2016

Related Article: Olesia I. Kucheriv, Sergii I. Shylin, Vadim Ksenofontov, Sebastian Dechert, Matti Haukka, Igor O. Fritsky, and Il’ya A. Gural’skiy|2016|Inorg.Chem.|55|4906|doi:10.1021/acs.inorgchem.6b00446

Space GroupCrystallographyCrystal Systemcatena-(tetrakis(mu2-Cyano-CN)-(mu2-2-iodopyrazine)-aqua-iron-nickel)Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1480687: Experimental Crystal Structure Determination

2016

Related Article: Olesia I. Kucheriv, Sergii I. Shylin, Vadim Ksenofontov, Sebastian Dechert, Matti Haukka, Igor O. Fritsky, and Il’ya A. Gural’skiy|2016|Inorg.Chem.|55|4906|doi:10.1021/acs.inorgchem.6b00446

Space GroupCrystallographyCrystal Systemcatena-[octakis(mu2-Cyano)-diaqua-bis(2-methylpyrazine)-di-iron-di-platinum 2-methylpyrazine unknown solvate]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1986758: Experimental Crystal Structure Determination

2020

Related Article: Sergii I. Shylin, Olesia I. Kucheriv, Sergiu Shova, Vadim Ksenofontov, Wolfgang Tremel, Il’ya A. Gural’skiy|2020|Inorg.Chem.|59|6541|doi:10.1021/acs.inorgchem.0c00627

Space GroupCrystallographyCrystal SystemCrystal Structurecatena-[tetrakis(mu-cyano)-(2-methylpyrazine)-iron(ii)-di-silver(i)]Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1480685: Experimental Crystal Structure Determination

2016

Related Article: Olesia I. Kucheriv, Sergii I. Shylin, Vadim Ksenofontov, Sebastian Dechert, Matti Haukka, Igor O. Fritsky, and Il’ya A. Gural’skiy|2016|Inorg.Chem.|55|4906|doi:10.1021/acs.inorgchem.6b00446

Space GroupCrystallographycatena-[tetrakis(mu2-Cyano)-aqua-(2-iodopyrazine)-iron-platinum]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1480683: Experimental Crystal Structure Determination

2016

Related Article: Olesia I. Kucheriv, Sergii I. Shylin, Vadim Ksenofontov, Sebastian Dechert, Matti Haukka, Igor O. Fritsky, and Il’ya A. Gural’skiy|2016|Inorg.Chem.|55|4906|doi:10.1021/acs.inorgchem.6b00446

Space GroupCrystallographycatena-(tetrakis(mu2-Cyano-CN)-bis(2-chloropyrimidine)-iron-nickel)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1480682: Experimental Crystal Structure Determination

2016

Related Article: Olesia I. Kucheriv, Sergii I. Shylin, Vadim Ksenofontov, Sebastian Dechert, Matti Haukka, Igor O. Fritsky, and Il’ya A. Gural’skiy|2016|Inorg.Chem.|55|4906|doi:10.1021/acs.inorgchem.6b00446

Space GroupCrystallographycatena-(tetrakis(mu2-Cyano-CN)-bis(2-chloropyrimidine)-iron-nickel)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct