0000000001302025
AUTHOR
Arunandan Kumar
Conductive cooling in white organic light emitting diode for enhanced efficiency and life time
We demonstrate white organic light emitting diodes with enhanced efficiency (26.8 lm/W) and life time (∼11 000 h) by improved heat dissipation through encapsulation composed of a metal (Cu, Mo, and Al) and mica sheet joined using thermally conducting epoxy. Finite element simulation is used to find effectiveness of these encapsulations for heat transfer. Device temperature is reduced by about 50% with the encapsulation. This, consequently, has improved efficiency and life time by about 30% and 60%, respectively, with respect to glass encapsulation. Conductive cooling of device is suggested as the possible cause for this enhancement.
Photophysical and electroluminescence properties of bis(2′,6′-difluoro-2,3′-bipyridinato-N,C4′)iridium(picolinate) complexes: effect of electron-withdrawing and electron-donating group substituents at the 4′ position of the pyridyl moiety of the cyclometalated ligand
Herein, we have synthesized a series of 2′,6′-difluoro-2,3′-bipyridine cyclometalating ligands by substituting electron-withdrawing (–CHO, –CF3, and –CN) and electron-donating (–OMe and –NMe2) groups at the 4′ position of the pyridyl moiety and utilized them for the construction of five new iridium(III) complexes (Ir1–Ir5) in the presence of picolinate as an ancillary ligand. The photophysical properties of the developed iridium(III) compounds were investigated with a view to understand the substituent effects. The strong electron-withdrawing (–CN) group containing the iridium(III) compound (Ir3) exhibits highly efficient genuine green phosphorescence (λmax = 508 nm) at room temperature in …
Tunable Solid State and Flexible Graphene Electronics
We demonstrate tunable solid state and flexible graphene field effect devices (FEDs) fabricated using a poly(methylmethacrylate) (PMMA) and lithium fluoride (LiF) composite dielectric. Increasing the concentration of LiF in the composite dielectric reduces the operating gate voltages significantly from 10 V to 1 V required leading to a decrease in resistance. Electron and hole mobility of 350 and 310 cm2/Vs at VD = -5 V are obtained for graphene FEDs with 10 % LiF concentration in the composite. Using composite dielectric also enabled excellent performance on flexible substrates without any significant change in mobility and resistance. Flexible FEDs with only 5 % and 12 % variation in mobi…
Exciton quenching by diffusion of 2,3,5,6-tetrafluoro-7,7’,8,8’-tetra cyano quino dimethane and its consequences on joule heating and lifetime of organic light-emitting diodes
In this Letter, the effect of F(4)-TCNQ insertion at the anode/hole transport layer (HTL) interface was studied on joule heating and the lifetime of organic light-emitting diodes (OLEDs). Joule heating was found to reduce significantly (pixel temperature decrease by about 10 K at a current density of 40 mA/cm(2)) by this insertion. However, the lifetime was found to reduce significantly with a 1 nm thick F(4)-TCNQ layer, and it improved by increasing the thickness of this layer. Thermal diffusion of F(4)-TCNQ into HTL leads to F(4)-TCNQ ionization by charge transfer, and drift of these molecules into the emissive layer caused faster degradation of the OLEDs. This drift was found to reduce w…
Phosphine oxide functionalized pyrenes as efficient blue light emitting multifunctional materials for organic light emitting diodes
In a search for blue light emitting multifunctional materials, the electron transport enhancing diphenyl phosphine–oxide (Ph2PO) group has been appended to blue light emitting pyrene derivatives. This design, we observe, leads to highly efficient electron transporting blue-emitters for non-doped organic light emitting devices (OLEDs) with good film formation characteristics. The superior performance is attributed to enhanced charge transport and formation of pyrene excimers assisted by thermally activated delayed fluorescence (TADF) in the device. We report the synthesis and characterization using experimental and computational methods of six such pyrene derivatives. Although three of these…
Plasmon-induced slow aging of exciton generation and dissociation for stable organic solar cells
Fast degradation is a major issue with organic photovoltaics (OPVs). Integrating plasmonics with OPVs has improved their efficiency; however, the stability effects are unknown. We demonstrate that plasmonic effects can improve the lifetime and efficiency. The aging effects on charge carrier generation and transport are investigated. Confocal time-resolved photoluminescence of Au nanoparticle (NP) doped polymer blend was performed to understand the plasmonic effects on excited-state dynamics. Hot exciton generation is observed directly at the Au-NP surface, which contributed to achieving a nearly perfect exciton dissociation yield. We found that slow aging of the plasmonic effect and the hot…
Colloidal Quantum Dot Integrated Light Sources for Plasmon Mediated Photonic Waveguide Excitation
We operate micron-sized CdSe/CdS core–shell quantum dot (QD) clusters deposited onto gold patches as integrated light sources for the excitation of photonic waveguides. The surface plasmon mode launched by the QD fluorescence at the top interface of the gold patches are efficiently coupled to photonic modes sustained by titanium dioxide ridge waveguides. We show that, despite a large effective index difference, the plasmonic and the photonic modes can couple with a very high efficiency provided the vertical offset between the two kinds of waveguides is carefully controlled. Based on the effective index contrast of the plasmonic and the photonic modes, we engineer in-plane integrated hybrid …
Tunable field effect properties in solid state and flexible graphene electronics on composite high – low k dielectric
We demonstrate tunable field effect properties in solid state and flexible graphene field effect devices (FEDs) fabricated using a poly(methylmethacrylate) (PMMA) and lithium fluoride (LiF) composite dielectric. Increasing the concentration of LiF in the composite dielectric increases the capacitance, which thereby reduces the operating gate voltages of FEDs significantly from 10 V to 1 V to achieve similar conductivity. Electron and hole mobility of 350 and 310 cm2/V at VD = −5 V are obtained for graphene FEDs with 10% LiF concentration in the composite. Composite dielectric also enabled excellent FEDs on flexible substrates without any significant change in mobility and resistance. Flexib…
CCDC 1005716: Experimental Crystal Structure Determination
Related Article: K. S. Bejoymohandas, Arunandan Kumar, S. Varughese, E. Varathan, V. Subramanian, M. L. P. Reddy|2015|J.Mater.Chem.C|3|7405|doi:10.1039/C5TC01260K
CCDC 973778: Experimental Crystal Structure Determination
Related Article: K. S. Bejoymohandas, Arunandan Kumar, S. Varughese, E. Varathan, V. Subramanian, M. L. P. Reddy|2015|J.Mater.Chem.C|3|7405|doi:10.1039/C5TC01260K
CCDC 979234: Experimental Crystal Structure Determination
Related Article: Godumala Mallesham, Chidirala Swetha, Surukonti Niveditha, Maneesha Esther Mohanty, Nanubolu Jagadeesh Babu, Arunandan Kumar, Kotamarthi Bhanuprakash, Vaidya Jayathirtha Rao|2015|J.Mater.Chem.C|3|1208|doi:10.1039/C4TC01753F