0000000001302099
AUTHOR
Vadim P. Boyarskiy
ADC-Based Palladium Catalysts for Aqueous Suzuki Miyaura Cross-Coupling Exhibit Greater Activity than the Most Advantageous Catalytic Systems
The reaction between the equimolar amounts of cis-[PdCl2(CNR1)2] (R1 = cyclohexyl (Cy) (1), tBu (2)) and the carbohydrazides R2CONHNH2 (R2 = Ph (5), 4-ClC6H4 (6), 3-NO2C6H4 (7), 4-NO2C6H4 (8), 4-CH3C6H4 (9), 3,4-(MeO)2C6H3 (10), naphth-1-yl (11), fur-2-yl (12), 4-NO2C6H4CH2 (13), Cy (14), 1-(4-fluorophenyl)-5-oxopyrrolidin-3-yl (15), (pyrrolidin-1-yl)C(O) (16)) proceeds in refluxing CHCl3 for ca. 4 h. A subsequent workup provided the aminocarbene species cis-[PdCl2{C(NHNHC(O)R2)═N(H)R1}(CNR1)] (18–33) in good to excellent (80–95%) isolated yields. The coupling of equimolar amounts of cis-[PdCl2(CNR1)2] (R1 = Cy (1), tBu (2), 2,6-Me2C6H3 (Xyl) (3), 2-Cl-6-MeC6H3 (4)) and PhSO2NHNH2 (17) occu…
A computationally feasible quantum chemical model for 13C NMR chemical shifts of PCB-derived carboxylic acids.
Two quantum chemical models have been derived for the prediction of 13C NMR chemical shifts of novel PCB acids obtained from PCBs by catalytic carbonylation. 13C isotropic shielding constants were calculated employing the GIAO (gauge-independent atomic orbital) method with density functional theory (DFT). The best results were obtained by cluster calculations, which took the solvent effects into account properly. In this approach, a solvent molecule (acetone) was attached by a hydrogen bond to every hydrogen atom present in a PCB acid, and the geometry of the molecular cluster was optimized employing the AM1 method. For 158 chemical shifts, the cross-validated standard error was 2.8 ppm and…
The H2C(X)–X•••X– (X = Cl, Br) Halogen Bonding of Dihalomethanes
The dihalomethane–halide H2C(X)–X···X– (X = Cl, Br) halogen bonding was detected in a series of the cis-[PdX(CNCy){C(NHCy)═NHC6H2Me2NH2}]X•CH2X2 (X = Cl, Br) associates by single-crystal XRD followed by DFT calculations. Although ESP calculations demonstrated that the σ-hole of dichloromethane is the smallest among all halomethane solvents (the maximum electrostatic potential is only 2.6 kcal/mol), the theoretical DFT calculations followed by Bader’s QTAIM analysis (M06/DZP-DKH level of theory) confirmed the H2C(X)–X···X– halogen bond in both the solid-state and gas-phase optimized geometries. The estimated bonding energy in H2C(X)–X···X– is in the 1.9–2.8 kcal/mol range. peerReviewed
Palladium-ADC complexes as efficient catalysts in copper-free and room temperature Sonogashira coupling
Abstract The metal-mediated coupling between cis-[PdCl2(CNR1)2] [R1 = cyclohexyl (Cy) 1, t-Bu 2, 2,6-Me2C6H3 (Xyl) 3, 2-Cl-6-MeC6H3 4] and hydrazones H2NN CR2R3 [R2, R3 = Ph 5; R2, R3 = C6H4(OMe-4) 6; R2/R3 = 9-fluorenyl 7; R2 = H, R3 = C6H4(OH-2) 8] provided carbene complexes cis-[PdCl2{C(N(H)N CR2R3) N(H)R1}(CNR1)] (9–24) in good (80–85%) yields. Complexes 9–24 showed high activity [yields up to 99%, and turnover numbers (TONs) up to 3.7 × 104] in the Sonogashira coupling of various aryl iodides with a range of substituted aromatic alkynes without the need of copper co-catalyst. The catalytic procedure runs at 80 °C for 1 h in EtOH using K2CO3 as a base. No formation of homocoupling or ac…
Application of palladium complexes bearing acyclic amino(hydrazido)carbene ligands as catalysts for copper-free Sonogashira cross-coupling
Abstract Metal-mediated coupling of one isocyanide in cis-[PdCl2(CNR1)2] (R1 = C6H11 (Cy) 1, tBu 2, 2,6-Me2C6H3 (Xyl) 3, 2-Cl-6-MeC6H3 4) and various carbohydrazides R2CONHNH2 [R2 = Ph 5, 4-ClC6H4 6, 3-NO2C6H4 7, 4-NO2C6H4 8, 4-CH3C6H4 9, 3,4-(MeO)2C6H3 10, naphth-1-yl 11, fur-2-yl 12, 4-NO2C6H4CH2 13, Cy 14, 1-(4-fluorophenyl)-5-oxopyrrolidine-3-yl 15, (pyrrolidin-1-yl)C(O) 16, 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propane-1-yl 17, EtNHC(O) 18] or sulfohydrazides R3SO2NHNH2 [R3 = Ph 19, 4-MeC6H4 20] led to a series of (hydrazido)(amino)carbene complexes cis-[PdCl2{ C (NHNHX) N(H)R1}(CNR1)]; X = COR2, SO2R3 (21–48, isolated yields 60–96%). All prepared species were characterized by elemental…
Diversity of Isomerization Patterns and Protolytic Forms in Aminocarbene PdII and PtII Complexes Formed upon Addition of N,N′-Diphenylguanidine to Metal-Activated Isocyanides
Reaction of the palladium(II) and platinum(II) isocyanide complexes cis-[MCl2(CNR)2] [M = Pd, R = C6H3(2,6-Me2) (Xyl), 2-Cl-6-MeC6H3, cyclohexyl (Cy), t-Bu, C(Me)2CH2(Me)3 (1,1,3,3-tetramethylbuth-1-yl abbreviated as tmbu); M = Pt, R = Xyl, 2-Cl-6-MeC6H3, Cy, t-Bu, and tmbu] with N,N′-diphenylguanidine (DPG) leads to DPG-derived metal-bound deprotonated acyclic diaminocarbene (ADC) species. This reaction occurs via a two-step process, involving the initial coupling of the guanidine with one of the isocyanides and leading to deprotonated monocarbene monochelated species, while the next addition grants the deprotonated bis-carbene bis-chelated metal compounds. DPG behaves as nucleophile, depr…
Reaction mechanism of regioisomerization in binuclear (diaminocarbene)PdII complexes
Abstract A series of binuclear PdII carbene complexes were synthesized via the treatment of cis-[PdCl2(CNXyl)2] (1) with benzo-1,3-thiazol-2-amines (2–6) and structurally characterized. In every case the reaction leads to the mixture of two regioisomers, which are able to interconvert. The study of the regioisomerization of the binuclear diaminocarbene species showed that it is a first-order reaction, that is, it occurs intramolecularly, and was analyzed with the Hammett function. Electron-withdrawing substituents in the benzothiazole moiety of the complexes as well as increasing the solvent polarity accelerate the reaction. The solvent donor strength correlates less well with the isomeriza…
The H2C(X)–X•••X– (X = Cl, Br) Halogen Bonding of Dihalomethanes
The dihalomethane–halide H2C(X)–X···X– (X = Cl, Br) halogen bonding was detected in a series of the cis-[PdX(CNCy){C(NHCy)═NHC6H2Me2NH2}]X•CH2X2 (X = Cl, Br) associates by single-crystal XRD followed by DFT calculations. Although ESP calculations demonstrated that the σ-hole of dichloromethane is the smallest among all halomethane solvents (the maximum electrostatic potential is only 2.6 kcal/mol), the theoretical DFT calculations followed by Bader’s QTAIM analysis (M06/DZP-DKH level of theory) confirmed the H2C(X)–X···X– halogen bond in both the solid-state and gas-phase optimized geometries. The estimated bonding energy in H2C(X)–X···X– is in the 1.9–2.8 kcal/mol range.
Intermolecular hydrogen bonding H···Cl in crystal structure of palladium(II)-bis(diaminocarbene) complex
Abstract The reaction of bis(isocyanide)palladium complex cis-[PdCl2(CNXyl)2] (Xyl=2,6-Me2C6H3) with excess of 4,5-dichlorobenzene-1,2-amine in a C2H4Cl2/MeOH mixture affords monocationic bis(diaminocarbene) complex cis-[PdClC{(NHXyl)=NHC6H2Cl2 NH2}{C(NHXyl)=NHC6H2Cl2NH2}]Cl (3) in moderate yield (42%). Complex 3 exists in the solid phase in the H-bonded dimeric associate of two single charged organometallic cations and two chloride anions according to X-ray diffraction data. The Hirshfeld surface analysis for the X-ray structure of 3 reveals that the crystal packing is determined primarily by intermolecular contacts H–Cl, H–H, and H–C. The intermolecular hydrogen bonds N–H···Cl and C–H···C…
Palladium(II)-Mediated Addition of Benzenediamines to Isocyanides: Generation of Three Types of Diaminocarbene Ligands Depending on the Isomeric Structure of the Nucleophile
Coupling of the palladium-bis(isocyanide) complexes cis-[PdCl2(CNR)2] (R = 2,6-Me2C6H3 1, 2-Cl-6-MeC6H3 2) with benzene-1,3-diamine (BDA1) leads to the diaminocarbene species cis-[PdCl2(CNR){C(NHR)═NH(1,3-C6H4NH2)}] (5 and 6, respectively). In this reaction, BDA1 behaves as a monofunctional nucleophile that adds to one of the RNC ligands by one amino group. By contrast, the reaction of 1 and 2 with benzene-1,4-diamine (BDA2) involves both amino functionalities of the diamine and leads to the binuclear species [cis-PdCl2(CNR){μ-C(NHR)═NH(1,4-C6H4)NH═C(NHR)}-(cis)-PdCl2(CNR)] (6 and 7) featuring two 1,4-bifunctional diaminocarbene ligands. The reaction of cis-[PdCl2(CNR)2] (R = cyclohexyl 3) …
CCDC 1966338: Experimental Crystal Structure Determination
Related Article: Alexander S. Mikherdov, Roman A. Popov, Mikhail A. Kinzhalov, Matti Haukka, Valeriy A. Polukeev, Vadim P. Boyarskiy, Andreas Roodt|2021|Inorg.Chim.Acta|514|120012|doi:10.1016/j.ica.2020.120012
CCDC 1825193: Experimental Crystal Structure Determination
Related Article: Mikhail A. Kinzhalov, Sergey V. Baykov, Alexander S. Novikov, Matti Haukka, Vadim P. Boyarskiy|2019|Z.Krist.Cryst.Mater.|234|155|doi:10.1515/zkri-2018-2100
CCDC 912875: Experimental Crystal Structure Determination
Related Article: Mikhail A. Kinzhalov, Konstantin V. Luzyanin, Vadim P. Boyarskiy, Matti Haukka, and Vadim Yu. Kukushkin|2013|Organometallics|32|5212|doi:10.1021/om4007592
CCDC 1501943: Experimental Crystal Structure Determination
Related Article: Elena A. Valishina, M. Fátima C. Guedes da Silva, Mikhail A. Kinzhalov, Svetlana A. Timofeeva, Tatyana M. Buslaeva, Matti Haukka, Armando J.L. Pombeiro , Vadim P. Boyarskiy, Vadim Yu. Kukushkin, Konstantin V. Luzyanin|2014|J.Mol.Catal.A:Chem.|395|162|doi:10.1016/j.molcata.2014.08.018
CCDC 1541823: Experimental Crystal Structure Determination
Related Article: Svetlana A. Katkova, Mikhail A. Kinzhalov, Peter M. Tolstoy, Alexander S. Novikov, Vadim P. Boyarskiy, Anastasiia Yu. Ananyan, Pavel V. Gushchin, Matti Haukka, Andrey A. Zolotarev, Alexander Yu. Ivanov, Semen S. Zlotsky, Vadim Yu. Kukushkin|2017|Organometallics|36|4145|doi:10.1021/acs.organomet.7b00569
CCDC 1501944: Experimental Crystal Structure Determination
Related Article: Elena A. Valishina, M. Fátima C. Guedes da Silva, Mikhail A. Kinzhalov, Svetlana A. Timofeeva, Tatyana M. Buslaeva, Matti Haukka, Armando J.L. Pombeiro , Vadim P. Boyarskiy, Vadim Yu. Kukushkin, Konstantin V. Luzyanin|2014|J.Mol.Catal.A:Chem.|395|162|doi:10.1016/j.molcata.2014.08.018
CCDC 1966337: Experimental Crystal Structure Determination
Related Article: Alexander S. Mikherdov, Roman A. Popov, Mikhail A. Kinzhalov, Matti Haukka, Valeriy A. Polukeev, Vadim P. Boyarskiy, Andreas Roodt|2021|Inorg.Chim.Acta|514|120012|doi:10.1016/j.ica.2020.120012
CCDC 1542914: Experimental Crystal Structure Determination
Related Article: Svetlana A. Katkova, Mikhail A. Kinzhalov, Peter M. Tolstoy, Alexander S. Novikov, Vadim P. Boyarskiy, Anastasiia Yu. Ananyan, Pavel V. Gushchin, Matti Haukka, Andrey A. Zolotarev, Alexander Yu. Ivanov, Semen S. Zlotsky, Vadim Yu. Kukushkin|2017|Organometallics|36|4145|doi:10.1021/acs.organomet.7b00569
CCDC 1435501: Experimental Crystal Structure Determination
Related Article: Mikhail A. Kinzhalov, Svetlana A. Timofeeva, Konstantin V. Luzyanin, Vadim P. Boyarskiy, Anton A. Yakimanskiy, Matti Haukka, Vadim Yu. Kukushkin|2016|Organometallics|35|218|doi:10.1021/acs.organomet.5b00936
CCDC 1435504: Experimental Crystal Structure Determination
Related Article: Mikhail A. Kinzhalov, Svetlana A. Timofeeva, Konstantin V. Luzyanin, Vadim P. Boyarskiy, Anton A. Yakimanskiy, Matti Haukka, Vadim Yu. Kukushkin|2016|Organometallics|35|218|doi:10.1021/acs.organomet.5b00936
CCDC 1435506: Experimental Crystal Structure Determination
Related Article: Mikhail A. Kinzhalov, Svetlana A. Timofeeva, Konstantin V. Luzyanin, Vadim P. Boyarskiy, Anton A. Yakimanskiy, Matti Haukka, Vadim Yu. Kukushkin|2016|Organometallics|35|218|doi:10.1021/acs.organomet.5b00936
CCDC 912877: Experimental Crystal Structure Determination
Related Article: Mikhail A. Kinzhalov, Konstantin V. Luzyanin, Vadim P. Boyarskiy, Matti Haukka, and Vadim Yu. Kukushkin|2013|Organometallics|32|5212|doi:10.1021/om4007592
CCDC 912876: Experimental Crystal Structure Determination
Related Article: Mikhail A. Kinzhalov, Konstantin V. Luzyanin, Vadim P. Boyarskiy, Matti Haukka, and Vadim Yu. Kukushkin|2013|Organometallics|32|5212|doi:10.1021/om4007592
CCDC 1501945: Experimental Crystal Structure Determination
Related Article: Elena A. Valishina, M. Fátima C. Guedes da Silva, Mikhail A. Kinzhalov, Svetlana A. Timofeeva, Tatyana M. Buslaeva, Matti Haukka, Armando J.L. Pombeiro , Vadim P. Boyarskiy, Vadim Yu. Kukushkin, Konstantin V. Luzyanin|2014|J.Mol.Catal.A:Chem.|395|162|doi:10.1016/j.molcata.2014.08.018
CCDC 1541822: Experimental Crystal Structure Determination
Related Article: Svetlana A. Katkova, Mikhail A. Kinzhalov, Peter M. Tolstoy, Alexander S. Novikov, Vadim P. Boyarskiy, Anastasiia Yu. Ananyan, Pavel V. Gushchin, Matti Haukka, Andrey A. Zolotarev, Alexander Yu. Ivanov, Semen S. Zlotsky, Vadim Yu. Kukushkin|2017|Organometallics|36|4145|doi:10.1021/acs.organomet.7b00569
CCDC 1542913: Experimental Crystal Structure Determination
Related Article: Svetlana A. Katkova, Mikhail A. Kinzhalov, Peter M. Tolstoy, Alexander S. Novikov, Vadim P. Boyarskiy, Anastasiia Yu. Ananyan, Pavel V. Gushchin, Matti Haukka, Andrey A. Zolotarev, Alexander Yu. Ivanov, Semen S. Zlotsky, Vadim Yu. Kukushkin|2017|Organometallics|36|4145|doi:10.1021/acs.organomet.7b00569
CCDC 1541821: Experimental Crystal Structure Determination
Related Article: Svetlana A. Katkova, Mikhail A. Kinzhalov, Peter M. Tolstoy, Alexander S. Novikov, Vadim P. Boyarskiy, Anastasiia Yu. Ananyan, Pavel V. Gushchin, Matti Haukka, Andrey A. Zolotarev, Alexander Yu. Ivanov, Semen S. Zlotsky, Vadim Yu. Kukushkin|2017|Organometallics|36|4145|doi:10.1021/acs.organomet.7b00569
CCDC 1517184: Experimental Crystal Structure Determination
Related Article: Daniil M. Ivanov, Mikhail A. Kinzhalov, Alexander S. Novikov, Ivan V. Ananyev, Anna A. Romanova, Vadim P. Boyarskiy, Matti Haukka, Vadim Yu. Kukushkin|2017|Cryst.Growth Des.|17|1353|doi:10.1021/acs.cgd.6b01754
CCDC 1541820: Experimental Crystal Structure Determination
Related Article: Svetlana A. Katkova, Mikhail A. Kinzhalov, Peter M. Tolstoy, Alexander S. Novikov, Vadim P. Boyarskiy, Anastasiia Yu. Ananyan, Pavel V. Gushchin, Matti Haukka, Andrey A. Zolotarev, Alexander Yu. Ivanov, Semen S. Zlotsky, Vadim Yu. Kukushkin|2017|Organometallics|36|4145|doi:10.1021/acs.organomet.7b00569
CCDC 1509734: Experimental Crystal Structure Determination
Related Article: Daniil M. Ivanov, Mikhail A. Kinzhalov, Alexander S. Novikov, Ivan V. Ananyev, Anna A. Romanova, Vadim P. Boyarskiy, Matti Haukka, Vadim Yu. Kukushkin|2017|Cryst.Growth Des.|17|1353|doi:10.1021/acs.cgd.6b01754
CCDC 1435500: Experimental Crystal Structure Determination
Related Article: Mikhail A. Kinzhalov, Svetlana A. Timofeeva, Konstantin V. Luzyanin, Vadim P. Boyarskiy, Anton A. Yakimanskiy, Matti Haukka, Vadim Yu. Kukushkin|2016|Organometallics|35|218|doi:10.1021/acs.organomet.5b00936
CCDC 1435503: Experimental Crystal Structure Determination
Related Article: Mikhail A. Kinzhalov, Svetlana A. Timofeeva, Konstantin V. Luzyanin, Vadim P. Boyarskiy, Anton A. Yakimanskiy, Matti Haukka, Vadim Yu. Kukushkin|2016|Organometallics|35|218|doi:10.1021/acs.organomet.5b00936
CCDC 1435502: Experimental Crystal Structure Determination
Related Article: Mikhail A. Kinzhalov, Svetlana A. Timofeeva, Konstantin V. Luzyanin, Vadim P. Boyarskiy, Anton A. Yakimanskiy, Matti Haukka, Vadim Yu. Kukushkin|2016|Organometallics|35|218|doi:10.1021/acs.organomet.5b00936
CCDC 1435505: Experimental Crystal Structure Determination
Related Article: Mikhail A. Kinzhalov, Svetlana A. Timofeeva, Konstantin V. Luzyanin, Vadim P. Boyarskiy, Anton A. Yakimanskiy, Matti Haukka, Vadim Yu. Kukushkin|2016|Organometallics|35|218|doi:10.1021/acs.organomet.5b00936
CCDC 1551262: Experimental Crystal Structure Determination
Related Article: Svetlana A. Katkova, Mikhail A. Kinzhalov, Peter M. Tolstoy, Alexander S. Novikov, Vadim P. Boyarskiy, Anastasiia Yu. Ananyan, Pavel V. Gushchin, Matti Haukka, Andrey A. Zolotarev, Alexander Yu. Ivanov, Semen S. Zlotsky, Vadim Yu. Kukushkin|2017|Organometallics|36|4145|doi:10.1021/acs.organomet.7b00569