0000000001302205
AUTHOR
Abhishake Mondal
Photomagnetic effect in a cyanide-bridged mixed-valence {FeII2FeIII2} molecular square
The self-assembly of [Fe(III)(Tp)(CN)(3)](-) and [Fe(II)(bik)(2)(S)(2)](2+) affords the cyanide-bridged mixed valence {Fe(III)(2)Fe(II)(2)}(2+) molecular square, which exhibits a photomagnetic effect under laser light irradiation at low temperature and also shows thermal spin-state conversion near ambient temperature.
On/Off Photoswitching in a Cyanide-Bridged {Fe2Co2} Magnetic Molecular Square
International audience; A repeatable bidirectional paramagnetic ↔ diamagnetic photomagnetic effect has been observed in the cyanide-bridged Fe-Co square complex {[Fe{B(pz)(4)}(CN)(3)](2)[Co(bik)(2)](2)}(ClO(4))(2)*3H(2)O [B(pz)(4) = tetrapyrazolylborate, bik = bis(1-methylimidazol-2-yl)ketone]. Magnetic measurements and low-temperature single-crystal X-ray diffraction experiments have shown that a complete electron transfer from the diamagnetic Fe(II)-Co(III) state to the paramagnetic Fe(III)-Co(II) metastable state is induced by 808 nm laser light irradiation, whereas the diamagnetic state is recovered in an almost quantitative yield under irradiation at 532 nm.
Combining Cyanometalates and Coordination Clusters: An Alternative Synthetic Route toward Original Molecular Materials
International audience; With the discovery of molecules or molecule-based compounds that can display blocked magnetization, magnetic ordering or switchable magnetic bistability, the research efforts devoted to molecular magnetic materials have considerably increased over the past two decades, fully exploiting the advantages of the bottom-up approach. 1-4 This research field focuses on promising properties for potential technological applications such as information storage, quantum computing and spintronics at the molecular scale, but it also provides fundamental insights into original quantum phenomena. 5,6 Coordination chemists have developed efficient synthetic tools for the preparation …
A cyanide and hydroxo-bridged nanocage: a new generation of coordination clusters.
International audience; Combining serendipitously-formed hydroxo-clusters, [CoII3(OH)(piv)4(L)]+ (where L = MeCN or Hpiv), with assembling cyanide building block, [FeIII(Tp)(CN)3]−, has led to an unprecedented architecture where polymetallic cobalt clusters and blocked tris-cyanide iron complexes define the apexes of a unique magnetic cubic nanocage.
An {Fe60} tetrahedral cage: building nanoscopic molecular assemblies through cyanometallate and alkoxo linkers
International audience; A nanoscopic {Fe60} coordination cage (approximately 3 nm) was prepared by the self assembly of a partially blocked tricyanidoferrate(III) complex and tris(alkoxo)-based iron(III) coordination motifs. This cage is a rare example of a mixed cyanido/alkoxo-bridged high nuclearity complex and it exemplifies the great potential of this new synthetic route to generate uncommon molecular architectures using cyanometallates as metalloligands versus alkoxo-based polynuclear entities.
CCDC 883430: Experimental Crystal Structure Determination
Related Article: Abhishake Mondal, Yanling Li, Mannan Seuleiman, Miguel Julve, Loic Toupet, Marylise Buron-Le Cointe, Rodrigue Lescouezec|2013|J.Am.Chem.Soc.|135|1653|doi:10.1021/ja3087467
CCDC 883431: Experimental Crystal Structure Determination
Related Article: Abhishake Mondal, Yanling Li, Mannan Seuleiman, Miguel Julve, Loic Toupet, Marylise Buron-Le Cointe, Rodrigue Lescouezec|2013|J.Am.Chem.Soc.|135|1653|doi:10.1021/ja3087467
CCDC 912843: Experimental Crystal Structure Determination
Related Article: Abhishake Mondal, Yanling Li, Mannan Seuleiman, Miguel Julve, Loic Toupet, Marylise Buron-Le Cointe, Rodrigue Lescouezec|2013|J.Am.Chem.Soc.|135|1653|doi:10.1021/ja3087467
CCDC 883429: Experimental Crystal Structure Determination
Related Article: Abhishake Mondal, Yanling Li, Mannan Seuleiman, Miguel Julve, Loic Toupet, Marylise Buron-Le Cointe, Rodrigue Lescouezec|2013|J.Am.Chem.Soc.|135|1653|doi:10.1021/ja3087467
CCDC 951875: Experimental Crystal Structure Determination
Related Article: Abhishake Mondal, Pierre-Igor Dassié, Lise-Marie Chamoreau, Yves Journaux, Miguel Julve, Laurent Lisnard, and Rodrigue Lescouëzec|2013|Cryst.Growth Des.|13|4190|doi:10.1021/cg401117u