0000000001302903
AUTHOR
Fatima Setifi
Crystal structure of [tris(4,4-bipyridine)]diium bis(1,1,3,3-tetracyano-2-ethoxypropenide) trihydrate
In the title hydrated salt, which was obtained from the hydrothermal reaction between between potassium 1,1,3,3-tetracyano-2-ethoxypropenide and 4,4′-bipyridine in the presence of iron(II) sulfate heptahydrate, the ionic components are linked into a three-dimensional network by C—H⋯N hydrogen bonds.
High-dimensional mixed-valence copper cyanide complexes: Syntheses, structural characterizations and magnetism
International audience; Reactions of CuCl 2 with different CN complexes in presence of a neutral ancillary ligand lead to two novel mixed-valence Cu complexes [Cu II (bpy)Cu I (CN) 3 ] n , 1 (bpy=2,2′-bipyridine) and {[Cu II (tn) 2 ][Cu I 4 (CN) 6 ]} n 2 (tn=1,3-diaminopropane). For compound 1, the asymmetric unit involves two Cu ions Cu1 and Cu2 (Cu I and Cu II centres, respectively) which strongly differ in their environments. The Cu1 ion presents a CuC 4 pseudo-tetrahedral geometry, while the Cu2 ion presents a CuN 5 slightly distorted square-pyramidal geometry. The extended structure of 1 is generated by three cyano ligands which differ in their coordination modes. One CN group has a μ …
New Multidimensional Coordination Polymers with μ 2 ‐ and μ 3 ‐dcno Cyano Carbanion Ligand {dcno – = [(NC) 2 CC(O)O(CH 2 ) 2 OH] – }
New polymeric materials [M(dcno)2(H2O)2] [M = FeII (1), CoII (2)] and [M(dcno)2] [M = CuII (3), MnII (4)] with dcno– =[(NC)2CC(O)O(CH2)2OH]– = 2,2-dicyano-1-(2-hydroxyethoxy)ethenolate anion have been synthesised and characterised by IR spectroscopy, X-ray crystallography and magnetic measurements. In compounds 1 and 2, each organic ligand acts in a bridging mode with its two nitrogen atoms bound to two different metal ions, while in compounds 3 and 4, each organic anion acts as a μ3-bridging ligand through its two nitrogen atoms and the oxygen atom of the OH group. Each metal ion has a pseudo-octahedral trans-MN4O2 environment with four nitrogen atoms from four different organic ligands an…
New planar polynitrile dianion and its first coordination polymer with unexpected short M⋯M contacts (tcno2−=[(NC)2CC(O)C(CN)2]2−)
International audience; A new planar polynitrile dianion ([tcno]2− = [(NC)2CC(O)C(CN)2]2−) has been synthesized as its potassium salt, K2[tcno] (1). The crystallization of 1 by the slow evaporation of an aqueous solution at room temperature gave two types of colourless crystals having two different shapes [1-A: fine plates and 1-B: needles] for which the crystal structure determinations showed similar geometries for the polynitrile anion in both the structures. The combination of this novel dianion with Cu(II) led to the coordination complex [Cu(tcno)2(H2O)2] (2), which constitutes the first coordination complex of this dianion. The structure of 2 can be described as a coordination polymer …
Polynitrile anions as ligands: From magnetic polymeric architectures to spin crossover materials
International audience; The use of polynitrile anions as ligands (L) either alone or in combination with neutral co-ligands (L′) is a very promising and appealing strategy to get molecular architectures with different topologies and dimensionalities thanks to their ability to coordinate and bridge metal ions in many different ways. The presence of several potentially coordinating nitrile groups (or even other donor groups as –OH, –SH or –NH2), their rigidity and their electronic delocalization allow the synthesis of original magnetic high dimensional coordination polymers with transition metals ions. Furthermore, these ligands have shown coordinating and bridging capabilities in novel discr…
Spin Crossover Iron(II) Coordination Polymer Chains: Syntheses, Structures, and Magnetic Characterizations of [Fe(aqin) 2 (μ 2 -M(CN) 4 )] (M = Ni(II), Pt(II), aqin = Quinolin-8-amine)
International audience; New Fe(II) coordination polymeric neutral chains of formula [Fe(aqin)2(μ2-M(CN)4)] (M = NiII (1) and PtII (2)) (aqin = Quinolin-8-amine) have been synthesized and characterized by infrared spectroscopy, X-ray diffraction, and magnetic measurements. The crystal structure determinations of 1–2 reveal in both cases a one-dimensional structure in which the planar [M(CN)4]2– (M = NiII (1) and PtII (2)) anion acts as a μ2-bridging ligand, and the two aqin molecules as chelating coligands. Examination of the intermolecular contacts in the two compounds reveals that the main contacts are ascribed to hydrogen bonding interactions involving the amine groups of the aqin chelati…
Spin crossover (SCO) iron(II) coordination polymer chain: Synthesis, structural and magnetic characterizations of [Fe(abpt)2(μ-M(CN)4)] (M=PtII and NiII)
Abstract New iron(II) coordination polymeric neutral chain of formula [Fe(abpt) 2 (μ-M(CN) 4 )], with M = Pt II ( 1 ), Ni II ( 2 ) and abpt = 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole, have been synthesized and characterized by infrared spectroscopy, X-ray diffraction and magnetic measurements. The two compounds are isostructural as deduced from a Rietveld analysis of X-ray powder diffraction data of 2 simulated from the single crystal structure of 1 . The crystal packing of 1 is formed by regular chains running along the crystallographic [−1 0 1] direction where the planar [Pt(CN) 4 ] 2− anion acts as a μ 2 -bridging ligand via two nitrogen atoms of two different trans cyano groups, whi…
Linkage isomerism in coordination polymers.
The use of the recently prepared polynitrile ligand tcnopr3OH(-) ([(NC)(2)CC(OCH(2)CH(2)CH(2)OH)C(CN)(2)](-)) with different salts of Fe(II), Co(II), and Ni(II) has led to a very rare example of linkage isomerism in a coordination chain. These pairs of linkage isomers can be formulated as [M(tcnopr3OH-κN,κO)(2)(H(2)O)(2)]; M = Fe (1), Co (3), and Ni(5) and [M(tcnopr3OH-κN,κN')(2)(H(2)O)(2)]; M = Fe (2), Co (4), and Ni (6). Compounds 1-2, 3-4, and 5-6 are three pairs of linkage isomers since they present the same formula and chain structure and they only differ in the connectivity of the polynitrile ligand bridging the metal ions in the chain: through a N and an O atom (1κN:2κO-isomer) or th…
New coordination polymers based on a novel polynitrile ligand: Synthesis, structure and magnetic properties of the series [M(tcnoetOH)2(4,4′-bpy)(H2O)2] (tcnoetOH−=[(NC)2CC(OCH2CH2OH)C(CN)2]−; M=Fe, Co and Ni)
International audience; A novel polynitrile anionic ligand, tcnoetOH−(=[(NC)2CC(OCH2CH2OH)C(CN)2]−), has been synthesized by a one-pot reaction from a cyclic acetal and malononitrile. This ligand has been successfully used to prepare, with 4,4′-bpy as co-ligand, a novel series of coordination polymers formulated as [M(tcnoetOH)2(4,4′-bpy)(H2O)2] with M(II) = Fe (1), Co (2) and Ni (3). These isostructural compounds present a linear chain structure consisting of octahedrally coordinated metal ions bridged by trans 4,4′-bpy ligands. The coordination sphere of the metal ions is completed with two terminal tcnoetOH− ligand and two water molecules. The magnetic properties indicate that the three …
New coordination polymer based on a triply bridged dicarboxylate ligand: Synthesis, structure, and magnetic properties of the adipato complex [Cu4(bpy)4(adip)3](tcnoet)2·2H2O {bpy=C10H8N2; adip2−=[O2C(CH2)4CO2]2−; tcnoet−=[(NC)2CC(OEt)C(CN)2]−}
International audience; One-pot reaction of copper(II) chloride dihydrate CuCl2 · 2H2O with 2,2′-bipyridyl (bpy = C10H8N2) in the presence of sodium adipate Na2adip (adip2− = [O2C(CH2)4CO2]2−) and potassium 1,1,3,3-tetracyano-2-ethoxypropenide (tcnoet− = [(NC)2CC(OEt)C(CN)2]−) gives the new compound [Cu4(bpy)4(adip)3](tcnoet)2 · 2H2O (1), which was characterized by single crystal X-ray diffraction analysis. The Cu(II) metal ion presents an elongated square pyramidal CuN2O3 environment, with an oxygen atom in apical position and a base plane involving almost equivalent bond lengths. The structure can be described as a pseudo dinuclear species in which two Cu(bpy) units are triply bridged by …
A novel polynitrile ligand with different coordination modes: Synthesis, structure and magnetic properties of the series [M(tcnoprOH)2(H2O)2] (M=Mn, Co and Cu) (tcnoprOH−=[(NC)2CC(OCH2CH2CH2OH)C(CN)2]−)
International audience; A novel polynitrile ligand (tcnoprOH− = [(NC)2CC(OCH2CH2CH2OH)C(CN)2]−) with up to five potentially coordinating groups has been synthesized in a one-pot reaction from a cyclic acetal and malononitrile. The combination of this novel ligand with different transition metal ions has led to the synthesis of two different structural types with the same formula but with different coordination modes in the ligand. Mn(II) and Cu(II) lead to a μ2-N,O-coordinating mode in the series of compounds formulated as [M(N,O-tcnoprOH)2(H2O)2] (M = MnII (1) and CuII (2)), whereas Co(II) and, most probably Ni(II), lead to a μ2-N,N′-coordinating mode in [Co(N,N′-tcnoprOH)2(H2O)2] (3). Bot…
Azide, water and adipate as bridging ligands for Cu(II): Synthesis, structure and magnetism of (μ4-adipato-κ-O)(μ-aqua)(μ-azido-κN1,N1)copper(II) monohydrate
The Distinguished Scientist Fellowship Program (DSFP) at King Saud University is gratefully acknowledged. The authors are grateful to the Algerian MESRS (Ministère de l’Enseignement Supérieur et de la Recherche Scientifique), the Université Ferhat Abbas Sétif 1, the KSU DSFP program and the Spanish MINECO (CTQ2014-52758-P and MAT2014-56143-R) and the Generalitat Valenciana (PrometeoII/2014/076) for financial support. The synthesis, characterization, single crystal structure and magnetic properties of the compound [(CuN3(OH2))2(adp)]n (1) are presented, in which adp stands for the adipate(2-) anion. This compound consists of layers containing chains of six-coordinated Cu(II) ions; the chains…
Copper(II) complexes with 2,5-bis(2-pyridyl)pyrazine and 1,1,3,3-tetracyano-2-ethoxypropenide anion: Syntheses, crystal structures and magnetic properties
International audience; The copper(II) complexes of formula [Cu2(2,5-dpp)(H2O)4(CF3SO3)4] · 2H2O (1) and [Cu2(2,5-dpp)(H2O)2(tcnoet)4]n (2) [2,5-dpp = 2,5-bis(2-pyridyl)pyrazine and tcnoet− = 1,1,3,3-tetracyano-2-ethoxypropenide anion] have been prepared and their structures determined by X-ray crystallographic methods. Compound 1 is a dinuclear complex where the 2,5-dpp molecule acts as a bis-bidentate bridge between the two copper centers, the electroneutrality being achieved by four terminally bound triflate anions. Each copper(II) ion presents an elongated octahedral CuN2O4 environment with two nitrogen atoms from 2,5-dpp and two water molecules in the basal plane and two triflate-oxyge…
Charge transfer salts containing a paramagnetic cyano-complex and iodine substituted organic donor involving –I(donor)···N(anion)-interactions
Abstract The preparation, crystal structures, EHT band calculation and optical properties of two new charge transfer salts, namely (DIET)2[Fe(bpca)(CN)3] (1) and (DIEDO)2[Fe(bpca)(CN)3] (2), where bpca = bis(2-pyridylcarbonyl)amide anion, DIET = diiodoethylenedithotetrathiavalene and DIEDO = diiodoethylenedioxotetrathiavalene are reported. The magnetic properties of 2 and those of the low-spin iron(III) precursor of formula (PPh4)[Fe(bpca)(CN)3]·H2O (3) were also investigated in the temperature range 1.9–205 K. Crystal data; (1): monoclinic P21, a = 8.8238(2)A, b = 13.2891(3) A, c = 18.5042(5) A, β = 91.115(1)°, Z = 2, R = 0.0710 for 7021 independent reflections with I > 2 σ(I) and (2): Mon…
Coordination isomerism in spin crossover (SCO) materials
International audience; A new series of three spin crossover (SCO) Fe(II) complexes based on a cyanocarbanion and on the neutral quinolin-8-amine (aqin) ligands, [Fe(aqin)2(tcnsme)2] (1), [Fe(aqin)2(tcnset)2] (2), and [Fe(aqin)2(tcnspr)2] (3), has been studied. The three complexes display similar molecular structures consisting of discrete [Fe(aqin)2(tcnsR)2] complexes [R = Me (1), Et (2), and Pr (3)]. Infrared spectroscopy and magnetic studies, performed on the three complexes, revealed the presence of similar SCO behaviors which strongly differ by their transition temperatures [234 K (1) < 266 K (2) < 360 K (3)]. The increase of the transition temperatures when passing from 1 to 3 may be …
CCDC 904664: Experimental Crystal Structure Determination
Related Article: Fatima Setifi, Catherine Charles, Sylvie Houille, Franck Thétiot, Smail Triki, Carlos J. Gómez-García, Sébastien Pillet|2013|Polyhedron|61|242|doi:10.1016/j.poly.2013.06.008
CCDC 2045407: Experimental Crystal Structure Determination
Related Article: Emmelyne Cuza, Rachid Motei, Fatima Setifi, Abdeslem Bentama, Carlos J. Gómez-García, Smail Triki|2021|J.Appl.Phys.|129|145501|doi:10.1063/5.0046055
CCDC 904663: Experimental Crystal Structure Determination
Related Article: Fatima Setifi, Catherine Charles, Sylvie Houille, Franck Thétiot, Smail Triki, Carlos J. Gómez-García, Sébastien Pillet|2013|Polyhedron|61|242|doi:10.1016/j.poly.2013.06.008
CCDC 1473802: Experimental Crystal Structure Determination
Related Article: Zouaoui Setifi, Mohamed Ghazzali, Christopher Glidewell, Olivier Pérez, Fatima Setifi, Carlos J. Gómez-García, Jan Reedijk|2016|Polyhedron|117|244|doi:10.1016/j.poly.2016.05.060
CCDC 931126: Experimental Crystal Structure Determination
Related Article: Fatima Setifi, Eric Milin, Catherine Charles, Franck Thétiot, Smail Triki, and Carlos J. Gómez-García|2014|Inorg.Chem.|53|97|doi:10.1021/ic401721x
CCDC 2046063: Experimental Crystal Structure Determination
Related Article: Emmelyne Cuza, Rachid Motei, Fatima Setifi, Abdeslem Bentama, Carlos J. Gómez-García, Smail Triki|2021|J.Appl.Phys.|129|145501|doi:10.1063/5.0046055
CCDC 938438: Experimental Crystal Structure Determination
Related Article: Fatima Setifi, Eric Milin, Catherine Charles, Franck Thétiot, Smail Triki, and Carlos J. Gómez-García|2014|Inorg.Chem.|53|97|doi:10.1021/ic401721x
CCDC 2045406: Experimental Crystal Structure Determination
Related Article: Emmelyne Cuza, Rachid Motei, Fatima Setifi, Abdeslem Bentama, Carlos J. Gómez-García, Smail Triki|2021|J.Appl.Phys.|129|145501|doi:10.1063/5.0046055
CCDC 2045404: Experimental Crystal Structure Determination
Related Article: Emmelyne Cuza, Rachid Motei, Fatima Setifi, Abdeslem Bentama, Carlos J. Gómez-García, Smail Triki|2021|J.Appl.Phys.|129|145501|doi:10.1063/5.0046055
CCDC 924208: Experimental Crystal Structure Determination
Related Article: Fatima Setifi, Eric Milin, Catherine Charles, Franck Thétiot, Smail Triki, and Carlos J. Gómez-García|2014|Inorg.Chem.|53|97|doi:10.1021/ic401721x
CCDC 924207: Experimental Crystal Structure Determination
Related Article: Fatima Setifi, Eric Milin, Catherine Charles, Franck Thétiot, Smail Triki, and Carlos J. Gómez-García|2014|Inorg.Chem.|53|97|doi:10.1021/ic401721x