0000000001303965
AUTHOR
Zulema Arcís-castillo
Reversible Chemisorption of Sulfur Dioxide in a Spin Crossover Porous Coordination Polymer
The chemisorption of sulfur dioxide (SO2) on the Hofmann-like spin crossover porous coordination polymer (SCO-PCP) {Fe(pz)[Pt(CN)4]} has been investigated at room temperature. Thermal analysis and adsorption-desorption isotherms showed that ca. 1 mol of SO2 per mol of {Fe(pz)[Pt(CN)4]} was retained in the pores. Nevertheless, the SO2 was loosely attached to the walls of the host network and completely released in 24 h at 298 K. Single crystals of {Fe(pz)[Pt(CN)4]}·nSO2 (n ≈ 0.25) were grown in water solutions saturated with SO2, and its crystal structure was analyzed at 120 K. The SO2 molecule is coordinated to the Pt(II) ion through the sulfur atom ion, Pt-S = 2.585(4) Å. This coordination…
[Fe(TPT)(2/3){M(I)(CN)2}2]⋅nSolv (M(I) = Ag, Au): new bimetallic porous coordination polymers with spin-crossover properties.
Two new heterobimetallic porous coordination polymers with the formula [Fe(TPT)2/3{MI(CN)2}2]¿nSolv (TPT=[(2,4,6-tris(4-pyridyl)-1,3,5-triazine]; MI=Ag (nSolv=0, 1¿MeOH, 2¿CH2Cl2), Au (nSolv=0, 2¿CH2Cl2)) have been synthesized and their crystal structures were determined at 120¿K and 293¿K by single-crystal X-ray analysis. These structures crystallized in the trigonal R-3m space group. The FeII ion resides at an inversion centre that defines a [FeN6] coordination core. Four dicyanometallate groups coordinate at the equatorial positions, whilst the axial positions are occupied by the TPT ligand. Each TPT ligand is centred in a ternary axis and bridges three crystallographically equivalent Fe…
Clathration of Five-Membered Aromatic Rings in the Bimetallic Spin Crossover Metal–Organic Framework [Fe(TPT)2/3{MI(CN)2}2]·G (MI = Ag, Au)
Six clathrate compounds of the three-dimensional spin crossover metal−organic framework formulated [Fe(TPT)2/3{MI (CN)2}2]· nG, where TPT is 2,4,6-tris(4-pyridyl)-1,3,5-triazine, MI = Ag or Au and G represent the guest molecules furan, pyrrole and thiophene, were synthesized using slow diffusion techniques. The clathrate compounds were characterized by single-crystal X-ray diffraction at 120 and 300 K, thermogravimetric analysis and thermal dependence of the magnetic susceptibility. All compounds crystallize in the R3̅ m trigonal space group. The FeII defines a unique [FeN6] crystallographic site with the equatorial positions occupied by four dicyanometallate ligands while the axial positio…
Structural, magnetic and calorimetric studies of a crystalline phase of the spin crossover compound [Fe(tzpy)2(NCSe)2]
The compound [Fe(tzpy)2(NCSe)2] (tzpy = 3-(2-pyridyl)-[1,2,3]triazolo[1,5-a]pyridine)) has been synthesized and its crystal structure, magnetic behavior and calorimetric properties investigated. Samples constituted of single crystals of [Fe(tzpy)2(NCSe) 2] display a relatively cooperative spin-state change centered at T1/2 ¿ 251.7 K with a hysteresis loop 3.5 K wide. The average enthalpy (¿H) and entropy (¿S) changes upon the spin crossover behavior (SCO) obtained from DSC measurements are 11.1 ± 0.4 kJ mol -1 and 44.5 ± 3 J K-1 mol-1, respectively. The magnetic and calorimetric data have been satisfactorily simulated using the mean-field regular solution model (Slichter-Drickamer) and the …
Heterobimetallic MOFs containing tetrathiocyanometallate building blocks: Pressure-induced spin crossover in the porous {Fe II(pz)[Pd II(SCN) 4]} 3D coordination polymer
Here we describe the synthesis, structure, and magnetic properties of two related coordination polymers made up of self-assembling Fe(II) ions, pyrazine (pz), and the tetrathiocyanopalladate anion. Compound {Fe(MeOH) 2[Pd(SCN) 4]}·pz (1a) is a two-dimensional coordination polymer where the Fe(II) ions are equatorially coordinated by the nitrogen atoms of four [Pd(SCN) 4] 2- anions, each of which connects four Fe(II) ions, forming corrugated layers {Fe[Pd(SCN) 4]} ∞. The coordination sphere of Fe(II) is completed by the oxygen atoms of two CH 3OH molecules. The layers stack one on top of each other in such a way that the included pz molecule establishes strong hydrogen bonds with the coordin…
CCDC 1050042: Experimental Crystal Structure Determination
Related Article: Lucía Piñeiro-López, Zulema Arcís-Castillo, M. Carmen Muñoz, and José A. Real|2014|Cryst.Growth Des.|14|6311|doi:10.1021/cg5010616
CCDC 1050041: Experimental Crystal Structure Determination
Related Article: Lucía Piñeiro-López, Zulema Arcís-Castillo, M. Carmen Muñoz, and José A. Real|2014|Cryst.Growth Des.|14|6311|doi:10.1021/cg5010616
CCDC 1050040: Experimental Crystal Structure Determination
Related Article: Lucía Piñeiro-López, Zulema Arcís-Castillo, M. Carmen Muñoz, and José A. Real|2014|Cryst.Growth Des.|14|6311|doi:10.1021/cg5010616
CCDC 904082: Experimental Crystal Structure Determination
Related Article: Zulema Arcís-Castillo, M. Carmen Muñoz, Gábor Molnár, Azzedine Bousseksou, José Antonio Real|2013|Chem.-Eur.J.|19|6851|doi:10.1002/chem.201203559
CCDC 904083: Experimental Crystal Structure Determination
Related Article: Zulema Arcís-Castillo, M. Carmen Muñoz, Gábor Molnár, Azzedine Bousseksou, José Antonio Real|2013|Chem.-Eur.J.|19|6851|doi:10.1002/chem.201203559
CCDC 1050034: Experimental Crystal Structure Determination
Related Article: Lucía Piñeiro-López, Zulema Arcís-Castillo, M. Carmen Muñoz, and José A. Real|2014|Cryst.Growth Des.|14|6311|doi:10.1021/cg5010616
CCDC 1050032: Experimental Crystal Structure Determination
Related Article: Lucía Piñeiro-López, Zulema Arcís-Castillo, M. Carmen Muñoz, and José A. Real|2014|Cryst.Growth Des.|14|6311|doi:10.1021/cg5010616
CCDC 1050039: Experimental Crystal Structure Determination
Related Article: Lucía Piñeiro-López, Zulema Arcís-Castillo, M. Carmen Muñoz, and José A. Real|2014|Cryst.Growth Des.|14|6311|doi:10.1021/cg5010616
CCDC 1050043: Experimental Crystal Structure Determination
Related Article: Lucía Piñeiro-López, Zulema Arcís-Castillo, M. Carmen Muñoz, and José A. Real|2014|Cryst.Growth Des.|14|6311|doi:10.1021/cg5010616
CCDC 1050036: Experimental Crystal Structure Determination
Related Article: Lucía Piñeiro-López, Zulema Arcís-Castillo, M. Carmen Muñoz, and José A. Real|2014|Cryst.Growth Des.|14|6311|doi:10.1021/cg5010616
CCDC 1050033: Experimental Crystal Structure Determination
Related Article: Lucía Piñeiro-López, Zulema Arcís-Castillo, M. Carmen Muñoz, and José A. Real|2014|Cryst.Growth Des.|14|6311|doi:10.1021/cg5010616
CCDC 1050038: Experimental Crystal Structure Determination
Related Article: Lucía Piñeiro-López, Zulema Arcís-Castillo, M. Carmen Muñoz, and José A. Real|2014|Cryst.Growth Des.|14|6311|doi:10.1021/cg5010616
CCDC 904080: Experimental Crystal Structure Determination
Related Article: Zulema Arcís-Castillo, M. Carmen Muñoz, Gábor Molnár, Azzedine Bousseksou, José Antonio Real|2013|Chem.-Eur.J.|19|6851|doi:10.1002/chem.201203559
CCDC 1050035: Experimental Crystal Structure Determination
Related Article: Lucía Piñeiro-López, Zulema Arcís-Castillo, M. Carmen Muñoz, and José A. Real|2014|Cryst.Growth Des.|14|6311|doi:10.1021/cg5010616
CCDC 929061: Experimental Crystal Structure Determination
Related Article: Zulema Arcís-Castillo, Francisco J. Muñoz-Lara, M. Carmen Muñoz, Daniel Aravena, Ana B. Gaspar, Juan F. Sánchez-Royo, Eliseo Ruiz, Masaaki Ohba, Ryotaro Matsuda, Susumu Kitagawa, and José A. Real|2013|Inorg.Chem.|52|12777|doi:10.1021/ic4020477
CCDC 904081: Experimental Crystal Structure Determination
Related Article: Zulema Arcís-Castillo, M. Carmen Muñoz, Gábor Molnár, Azzedine Bousseksou, José Antonio Real|2013|Chem.-Eur.J.|19|6851|doi:10.1002/chem.201203559
CCDC 904079: Experimental Crystal Structure Determination
Related Article: Zulema Arcís-Castillo, M. Carmen Muñoz, Gábor Molnár, Azzedine Bousseksou, José Antonio Real|2013|Chem.-Eur.J.|19|6851|doi:10.1002/chem.201203559
CCDC 1050037: Experimental Crystal Structure Determination
Related Article: Lucía Piñeiro-López, Zulema Arcís-Castillo, M. Carmen Muñoz, and José A. Real|2014|Cryst.Growth Des.|14|6311|doi:10.1021/cg5010616