0000000001304229

AUTHOR

Mario Mech

showing 5 related works from this author

Synoptic development during the ACLOUD/PASCAL field campaign near Svalbard in spring 2017

2018

Abstract. The two concerted field campaigns Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) and the Physical feedbacks of Arctic planetary boundary level Sea ice, Cloud and AerosoL (PASCAL) took place near Svalbard from 23 May to 26 June 2017. They were focused on studying Arctic mixed-phase clouds and involved observations from two airplanes (ACLOUD), an icebreaker (PASCAL), as well as surface-based stations, a tethered balloon, and satellites. Here, we present the synoptic development during the 35 day period of the campaigns, using classical near-surface and upper-air meteorological observations, as well as operational satellite and model data. Over the ca…

Warm frontgeographygeography.geographical_feature_categoryArctic13. Climate actionClimatologyCloud coverPeriod (geology)Polar amplificationSea iceEnvironmental scienceSatelliteAerosol
researchProduct

The Arctic Cloud Puzzle: Using ACLOUD/PASCAL Multiplatform Observations to Unravel the Role of Clouds and Aerosol Particles in Arctic Amplification

2019

A consortium of polar scientists combined observational forces in a field campaign of unprecedented complexity to uncover the secrets of clouds and their role in Arctic amplification. Two research aircraft, an icebreaker research vessel, an ice-floe camp including an instrumented tethered balloon, and a permanent ground-based measurement station were employed in this endeavour. Clouds play an important role in Arctic amplification. This term represents the recently observed enhanced warming of the Arctic relative to the global increase of near-surface air temperature. However, there are still important knowledge gaps regarding the interplay between Arctic clouds and aerosol particles, surfa…

Atmospheric Science010504 meteorology & atmospheric sciencesbusiness.industryCloud computingPascal (programming language)010502 geochemistry & geophysics01 natural sciencesAerosolThe arcticEarth sciencesClimatologyddc:550Polar amplificationEnvironmental sciencebusinesscomputer0105 earth and related environmental sciencescomputer.programming_languageBulletin of the American Meteorological Society
researchProduct

A comprehensive in situ and remote sensing data set from the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign

2019

The Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign was carried out north-west of Svalbard (Norway) between 23 May and 6 June 2017. The objective of ACLOUD was to study Arctic boundary layer and mid-level clouds and their role in Arctic amplification. Two research aircraft (Polar 5 and 6) jointly performed 22 research flights over the transition zone between open ocean and closed sea ice. Both aircraft were equipped with identical instrumentation for measurements of basic meteorological parameters, as well as for turbulent and radiative energy fluxes. In addition, on Polar 5 active and passive remote sensing instruments were installed, while Polar 6 …

010504 meteorology & atmospheric sciences02 engineering and technology01 natural sciencesRadiative fluxddc:5500202 electrical engineering electronic engineering information engineeringSea icelcsh:Environmental sciences0105 earth and related environmental sciencesRemote sensinglcsh:GE1-350[SDU.OCEAN]Sciences of the Universe [physics]/Ocean AtmosphereData processinggeographygeography.geographical_feature_categorybusiness.industrylcsh:QE1-996.5020206 networking & telecommunicationsTrace gaslcsh:GeologyEarth sciencesArctic13. Climate actionRemote sensing (archaeology)Polar amplificationGeneral Earth and Planetary SciencesEnvironmental scienceData centerbusiness
researchProduct

Meteorological conditions during the ACLOUD/PASCAL field campaign near Svalbard in early summer 2017

2018

Abstract. The two concerted field campaigns, Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) and the Physical feedbacks of Arctic planetary boundary level Sea ice, Cloud and AerosoL (PASCAL), took place near Svalbard from 23 May to 26 June 2017. They were focused on studying Arctic mixed-phase clouds and involved observations from two airplanes (ACLOUD), an icebreaker (PASCAL) and a tethered balloon, as well as ground-based stations. Here, we present the synoptic development during the 35-day period of the campaigns, using near-surface and upper-air meteorological observations, as well as operational satellite, analysis, and reanalysis data. Over the campaign…

Atmospheric Sciencegeographygeography.geographical_feature_category010504 meteorology & atmospheric sciencesAdvectionCloud cover010502 geochemistry & geophysics01 natural scienceslcsh:QC1-999Aerosollcsh:ChemistryWarm frontArcticlcsh:QD1-99913. Climate actionClimatologyPeriod (geology)Sea iceEnvironmental scienceSatelliteInstitut für Geowissenschaftenlcsh:Physics0105 earth and related environmental sciences
researchProduct

Cloud top altitude retrieved from Lidar measurements during ACLOUD at 1 second resolution

2021

During the ACLOUD aircraft campaign (23.5.2017 - 26.6.2017) the AMALi Lidar was installed mostly nadir pointing. This dataset contains the cloud top altitude from those measurements (altitudes with a strong signal increase) as well as a cloud mask, derived from the optical depth of the column at 1 second resolution. The majority of the data was collected northwest of the Svalbard archipelago. More details on the campaign can be found in Wendisch 2018 and Ehrlich 2019 and here (https://home.uni-leipzig.de/~ehrlich/ACLOUD_wiki_doku). Please check the data documentation (https://download.pangaea.de/reference/108729/attachments/readme_documentation_AMALi_cloudtop.pdf) before using this dataset.

Longitude of eventAircraftPolar 5Binary ObjectAC3Latitude of eventSvalbardArcticArctic Amplification (AC3)Date/Time of eventAirborne Mobile Aerosol Lidarcloudairborne measurementsLidarEvent labelDate Time of eventairborneACLOUDBinary Object (File Size)mixed phase cloudsAMALiP5_206_ACLOUD_2017airborne lidarArctic Amplification AC3cloud top altitudeEarth System Researchmixed-phase cloudsBinary Object File Size
researchProduct