0000000001304694
AUTHOR
Lise-marie Chamoreau
Multiferroics by Rational Design: Implementing Ferroelectricity in Molecule-Based Magnets
Multiferroics (MF) are materials that exhibit simultaneouslyseveral ferroic order parameters. Among the multiferroicmaterials, those combining antiferro- or ferroelectricity (FE)and antiferro-, ferri-, or ferromagnetism (FM) within thesame material are highly desirable: the coexistence of thepolar and magnetic orders paves the way towards four-levelmemories while their interactions through the magnetoelec-tric effect makes it possible to control the magnetization byelectric fields and hence to develop electronically tuneablemagnetic devices, which are an essential feature for spin-tronics.
Field-induced single ion magnet behaviour of discrete and one-dimensional complexes containing [bis(1-methylimidazol-2-yl)ketone]-cobalt(II) building units.
International audience; We describe herein the first examples of six-coordinate CoII single-ion magnets (SIMs) based on the β-diimine Mebik ligand [Mebik = bis(1-methylimidazol-2-yl)ketone]: two mononuclear [CoII(Rbik)2L2] complexes and one mixed-valence {CoIII2CoII}n chain of formulas [CoII(Mebik)(H2O)(dmso)(μ-NC)2CoIII2(μ-2,5-dpp)(CN)6]n·1.4nH2O (3) [L = NCS (1), NCSe (2) and 2,5-dpp = 2,5-bis(2-pyridyl)pyrazine (3)]. Two bidentate Mebik molecules plus two monodentate N-coordinated pseudohalide groups in cis positions build somewhat distorted octahedral surroundings around the high-spin cobalt(II) ions in 1 and 2. The diamagnetic [CoIII2(μ-2,5-dpp)(CN)8]2− metalloligand coordinates the pa…
Variation of the ground spin state in homo- and hetero-octanuclear copper(II) and nickel(II) double-star complexes with a meso-helicate-type metallacryptand core.
Homo- and heterometallic octanuclear complexes of formula Na₂{[Cu₂(mpba)₃][Cu(Me₅dien)]₆}-(ClO₄)₆·12H₂O (1), Na₂{[Cu₂(Mempba)₃][Cu(Me₅dien)]₆}(ClO₄)₆·12H₂O (2), Na₂{[Ni₂(mpba)₃]-[Cu(Me₅dien)]₆}(ClO₄)₆·12H₂O (3), Na₂{[Ni₂(Mempba)₃][Cu(Me₅dien)]₆}(ClO₄)₆·9H₂O (4), {[Ni₂(mpba)₃][Ni(dipn)(H₂O)]₆}(ClO₄)₄·12.5H₂O (5), and {[Ni₂(Mempba)₃][Ni(dipn)-(H₂O)]₆}(ClO₄)₄·12H₂O (6) [mpba = 1,3-phenylenebis(oxamate), Mempba = 4-methyl-1,3-phenylenebis(oxamate), Me₅dien = N,N,N',N'',N''-pentamethyldiethylenetriamine, and dipn = dipropylenetriamine] have been synthesized through the "complex-as-ligand/complex-as-metal" strategy. Single-crystal X-ray diffraction analyses of 1, 3, and 5 show cationic M(II)₂M'(I…
Self-assembly, metal binding ability, and magnetic properties of dinickel(II) and dicobalt(II) triple mesocates
Two metallacyclic complexes of general formula Na-8[(M2L3)-L-II]center dot xH(2)O [M = Ni (4) and Co (5) with x = 15 (4) and 17 (5)] have been self-assembled in aqueous solution from N,N'-1,3-phenylenebis(oxamic acid) (H4L) and M2+ ions in a ligand/metal molar ratio of 3 : 2 in the presence of NaOH acting as base. X-Ray structural analyses of 4 and 5 show triple-stranded, dinuclear anions of the meso-helicate-type (so-called mesocates) with C-3h molecular symmetry. The two octahedral metal-tris(oxamate) moieties of opposite chiralities (Delta, Lambda form) are connected by three m-phenylene spacers at intermetallic distances of 6.822(2) (4) and 6.868(2) angstrom (5) to give a metallacryptan…
Combining Cyanometalates and Coordination Clusters: An Alternative Synthetic Route toward Original Molecular Materials
International audience; With the discovery of molecules or molecule-based compounds that can display blocked magnetization, magnetic ordering or switchable magnetic bistability, the research efforts devoted to molecular magnetic materials have considerably increased over the past two decades, fully exploiting the advantages of the bottom-up approach. 1-4 This research field focuses on promising properties for potential technological applications such as information storage, quantum computing and spintronics at the molecular scale, but it also provides fundamental insights into original quantum phenomena. 5,6 Coordination chemists have developed efficient synthetic tools for the preparation …
A cyanide and hydroxo-bridged nanocage: a new generation of coordination clusters.
International audience; Combining serendipitously-formed hydroxo-clusters, [CoII3(OH)(piv)4(L)]+ (where L = MeCN or Hpiv), with assembling cyanide building block, [FeIII(Tp)(CN)3]−, has led to an unprecedented architecture where polymetallic cobalt clusters and blocked tris-cyanide iron complexes define the apexes of a unique magnetic cubic nanocage.
An {Fe60} tetrahedral cage: building nanoscopic molecular assemblies through cyanometallate and alkoxo linkers
International audience; A nanoscopic {Fe60} coordination cage (approximately 3 nm) was prepared by the self assembly of a partially blocked tricyanidoferrate(III) complex and tris(alkoxo)-based iron(III) coordination motifs. This cage is a rare example of a mixed cyanido/alkoxo-bridged high nuclearity complex and it exemplifies the great potential of this new synthetic route to generate uncommon molecular architectures using cyanometallates as metalloligands versus alkoxo-based polynuclear entities.
CCDC 2096753: Experimental Crystal Structure Determination
Related Article: Juan-Ram��n Jim��nez, Buqing Xu, Hasnaa El Said, Yanling Li, Jurgen von Bardeleben, Lise-Marie Chamoreau, Rodrigue Lescou��zec, Sergiu Shova, Diana Visinescu, Maria-Gabriela Alexandru, Joan Cano, Miguel Julve|2021|Dalton Trans.|50|16353|doi:10.1039/D1DT02441H
CCDC 2096752: Experimental Crystal Structure Determination
Related Article: Juan-Ram��n Jim��nez, Buqing Xu, Hasnaa El Said, Yanling Li, Jurgen von Bardeleben, Lise-Marie Chamoreau, Rodrigue Lescou��zec, Sergiu Shova, Diana Visinescu, Maria-Gabriela Alexandru, Joan Cano, Miguel Julve|2021|Dalton Trans.|50|16353|doi:10.1039/D1DT02441H
CCDC 2072597: Experimental Crystal Structure Determination
Related Article: Juan-Ram��n Jim��nez, Buqing Xu, Hasnaa El Said, Yanling Li, Jurgen von Bardeleben, Lise-Marie Chamoreau, Rodrigue Lescou��zec, Sergiu Shova, Diana Visinescu, Maria-Gabriela Alexandru, Joan Cano, Miguel Julve|2021|Dalton Trans.|50|16353|doi:10.1039/D1DT02441H
CCDC 951875: Experimental Crystal Structure Determination
Related Article: Abhishake Mondal, Pierre-Igor Dassié, Lise-Marie Chamoreau, Yves Journaux, Miguel Julve, Laurent Lisnard, and Rodrigue Lescouëzec|2013|Cryst.Growth Des.|13|4190|doi:10.1021/cg401117u