0000000001304800

AUTHOR

Mohamed Darari

Towards Iron(II) Complexes with Octahedral Geometry: Synthesis, Structure and Photophysical Properties

The control of ligand-field splitting in iron (II) complexes is critical to slow down the metal-to-ligand charge transfer (MLCT)-excited states deactivation pathways. The gap between the metal-centered states is maximal when the coordination sphere of the complex approaches an ideal octahedral geometry. Two new iron(II) complexes (C1 and C2), prepared from pyridylNHC and pyridylquinoline type ligands, respectively, have a near-perfect octahedral coordination of the metal. The photophysics of the complexes have been further investigated by means of ultrafast spectroscopy and TD-DFT modeling. For C1, it is shown that&mdash

research product

NHC-Based Iron Sensitizers for DSSCs

International audience; Nanostructured dye-sensitized solar cells (DSSCs) are promising photovoltaic devices because of their low cost and transparency. Ruthenium polypyridine complexes have long been considered as lead sensitizers for DSSCs, allowing them to reach up to 11% conversion efficiency. However, ruthenium suffers from serious drawbacks potentially limiting its widespread applicability, mainly related to its potential toxicity and scarcity. This has motivated continuous research efforts to develop valuable alternatives from cheap earth-abundant metals, and among them, iron is particularly attractive. Making iron complexes applicable in DSSCs is highly challenging due to an ultrafa…

research product

Photophysical Investigation of Iron(II) Complexes Bearing Bidentate Annulated Isomeric Pyridine-NHC Ligands

The possibility of achieving luminescent and photophysically active metal-organic compounds relies on the stabilization of charge transfer states and kinetically and thermodynamically blocking non-...

research product

CCDC 1982173: Experimental Crystal Structure Determination

Related Article: Mohamed Darari, Antonio Francés-Monerris, Bogdan Marekha, Abdelatif Doudouh, Emmanuel Wenger, Antonio Monari, Stefan Haacke, Philippe C. Gros|2020|Molecules|25|5991|doi:10.3390/molecules25245991

research product

CCDC 1992132: Experimental Crystal Structure Determination

Related Article: Mohamed Darari, Antonio Francés-Monerris, Bogdan Marekha, Abdelatif Doudouh, Emmanuel Wenger, Antonio Monari, Stefan Haacke, Philippe C. Gros|2020|Molecules|25|5991|doi:10.3390/molecules25245991

research product