0000000001304805

AUTHOR

Stefan Haacke

showing 6 related works from this author

Towards Iron(II) Complexes with Octahedral Geometry: Synthesis, Structure and Photophysical Properties

2020

The control of ligand-field splitting in iron (II) complexes is critical to slow down the metal-to-ligand charge transfer (MLCT)-excited states deactivation pathways. The gap between the metal-centered states is maximal when the coordination sphere of the complex approaches an ideal octahedral geometry. Two new iron(II) complexes (C1 and C2), prepared from pyridylNHC and pyridylquinoline type ligands, respectively, have a near-perfect octahedral coordination of the metal. The photophysics of the complexes have been further investigated by means of ultrafast spectroscopy and TD-DFT modeling. For C1, it is shown that&mdash

[CHIM.INOR] Chemical Sciences/Inorganic chemistryLigand field theoryCoordination sphereMaterials scienceIronPharmaceutical Scienceexcited states dynamics[CHIM.INOR]Chemical Sciences/Inorganic chemistryCrystallography X-RayLigands010402 general chemistry01 natural sciencesArticletime-resolved spectroscopyAnalytical Chemistrylcsh:QD241-441MetalX-Ray Diffractionlcsh:Organic chemistryDrug DiscoveryOctahedral molecular geometry[CHIM.CRIS]Chemical Sciences/Cristallographyiron (II) complexes[CHIM.COOR]Chemical Sciences/Coordination chemistryFerrous Compounds[CHIM.CRIS] Chemical Sciences/CristallographyPhysical and Theoretical Chemistryoctahedral geometrydensity functional theoryComputingMilieux_MISCELLANEOUSMolecular Structure010405 organic chemistryLigandOrganic Chemistry[CHIM.COOR] Chemical Sciences/Coordination chemistry0104 chemical sciences3. Good healthCrystallographyOctahedron[CHIM.OTHE] Chemical Sciences/OtherChemistry (miscellaneous)Excited statevisual_artvisual_art.visual_art_mediumThermodynamicsMolecular MedicineDensity functional theory[CHIM.OTHE]Chemical Sciences/Other
researchProduct

Bidentate pyridyl‐NHC ligands: synthesis, ground and excited state properties of their iron(II) complexes and role of the fac/mer isomerism

2021

International audience; Iron complexes are promising candidates for the development of sustainable molecular photoactive materials as an alternative to those based on precious metals such as Ir, Pt or Ru. These compounds possess metal-ligand charge transfer (MLCT) transitions potentially of high interest for energy conversion or photocatalysis applications if the ultrafast deactivation via lower-lying metal-centred (MC) states can be impeded. Following an introduction describing the main design strategies used so far to increase the MLCT lifetimes, we review some of our latest contributions to the field regarding bidentate Fe(II) complexes comprising N-heterocyclic carbene ligands. The disc…

Computational chemistryDenticity010405 organic chemistryChemistryIronBidentate ligands[CHIM.COOR] Chemical Sciences/Coordination chemistry010402 general chemistry01 natural sciencesMedicinal chemistry0104 chemical sciencesInorganic Chemistry[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry[CHIM.THEO] Chemical Sciences/Theoretical and/or physical chemistryExcited state[CHIM.COOR]Chemical Sciences/Coordination chemistryCarbene ligandsUltrafast spectroscopy
researchProduct

NHC-Based Iron Sensitizers for DSSCs

2018

International audience; Nanostructured dye-sensitized solar cells (DSSCs) are promising photovoltaic devices because of their low cost and transparency. Ruthenium polypyridine complexes have long been considered as lead sensitizers for DSSCs, allowing them to reach up to 11% conversion efficiency. However, ruthenium suffers from serious drawbacks potentially limiting its widespread applicability, mainly related to its potential toxicity and scarcity. This has motivated continuous research efforts to develop valuable alternatives from cheap earth-abundant metals, and among them, iron is particularly attractive. Making iron complexes applicable in DSSCs is highly challenging due to an ultrafa…

NHC ligands[CHIM.ORGA]Chemical Sciences/Organic chemistry[CHIM.COOR] Chemical Sciences/Coordination chemistry[CHIM.ORGA] Chemical Sciences/Organic chemistrylcsh:QD146-197[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry[CHIM.THEO] Chemical Sciences/Theoretical and/or physical chemistryiron complexes[CHIM] Chemical Scienceslcsh:Inorganic chemistry[CHIM]Chemical Sciences[CHIM.COOR]Chemical Sciences/Coordination chemistryexcited statesCèl·lules fotoelèctriquesphotophysicsFerro
researchProduct

Photophysical Investigation of Iron(II) Complexes Bearing Bidentate Annulated Isomeric Pyridine-NHC Ligands

2020

The possibility of achieving luminescent and photophysically active metal-organic compounds relies on the stabilization of charge transfer states and kinetically and thermodynamically blocking non-...

[CHIM.INOR] Chemical Sciences/Inorganic chemistryDenticity02 engineering and technology[CHIM.INOR]Chemical Sciences/Inorganic chemistry010402 general chemistry01 natural sciencesChemical synthesischemistry.chemical_compoundPyridinePolymer chemistry[CHIM] Chemical Sciences[CHIM]Chemical Sciences[CHIM.COOR]Chemical Sciences/Coordination chemistryPhysical and Theoretical Chemistryfused NHCComputingMilieux_MISCELLANEOUSphotophysicsLigandMinimum Energy Path[CHIM.COOR] Chemical Sciences/Coordination chemistry021001 nanoscience & nanotechnology3. Good health0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materials[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry[CHIM.THEO] Chemical Sciences/Theoretical and/or physical chemistryGeneral Energyiron complexeschemistrydecay process0210 nano-technologyLuminescenceTD-DFT
researchProduct

CCDC 1982173: Experimental Crystal Structure Determination

2020

Related Article: Mohamed Darari, Antonio Francés-Monerris, Bogdan Marekha, Abdelatif Doudouh, Emmanuel Wenger, Antonio Monari, Stefan Haacke, Philippe C. Gros|2020|Molecules|25|5991|doi:10.3390/molecules25245991

Space GroupCrystallographyCrystal SystemCrystal Structurebis[88'-(pyridine-26-diyl)bis(quinoline)]-iron bis(hexafluorophosphate) dihydrateCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1992132: Experimental Crystal Structure Determination

2020

Related Article: Mohamed Darari, Antonio Francés-Monerris, Bogdan Marekha, Abdelatif Doudouh, Emmanuel Wenger, Antonio Monari, Stefan Haacke, Philippe C. Gros|2020|Molecules|25|5991|doi:10.3390/molecules25245991

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(33'-dimethyl-11'-(pyridine-26-diyldimethylene)bis(imidazol-2-ylidene))-iron bis(hexafluorophosphate)Experimental 3D Coordinates
researchProduct