0000000001305679

AUTHOR

Ville-petri Friman

FLUCTUATING TEMPERATURE LEADS TO EVOLUTION OF THERMAL GENERALISM AND PREADAPTATION TO NOVEL ENVIRONMENTS

Environmental fluctuations can select for generalism, which is also hypothesized to increase organisms' ability to invade novel environments. Here, we show that across a range of temperatures, opportunistic bacterial pathogen Serratia marcescens that evolved in fluctuating temperature (daily variation between 24°C and 38°C, mean 31°C) outperforms the strains that evolved in constant temperature (31°C). The growth advantage was also evident in novel environments in the presence of parasitic viruses and predatory protozoans, but less clear in the presence of stressful chemicals. Adaptation to fluctuating temperature also led to reduced virulence in Drosophila melanogaster host, which suggests…

research product

Pulsed-Resource Dynamics Constrain the Evolution of Predator-Prey Interactions

Although temporal variability in the physical environment plays a major role in population fluctuations, little is known about how it drives the ecological and evolutionary dynamics of species interactions. We studied experimentally how extrinsic resource pulses affect evolutionary and ecological dynamics between the prey bacterium Serratia marcescens and the predatory protozoan Tetrahymena thermophila. Predation increased the frequency of defensive, nonpigmented prey types, which bore competitive costs in terms of reduced maximum growth rate, most in a constant-resource environment. Furthermore, the predator densities of the pulsed-resource environment regularly fluctuated above and below …

research product

Predation and resource fluctuations drive eco-evolutionary dynamics of a bacterial community

Predation and temporal resource availability are among the most important factors determining prey community dynamics and composition. Both factors have been shown to affect prey diversity, but less is known about their interactive effects, especially in rapidly evolving prey communities. In a laboratory microcosm experiment, we manipulated the presence of the predatory protozoan Tetrahymena thermophila and the temporal patterns in the availability of resources for a bacterial prey community. We found that both predation and temporal fluctuations in prey resources resulted in a more even prey community, and these factors also interacted so that the effect of predation was only seen in a flu…

research product

Pulsed-resource dynamics increase the asymmetry of antagonistic coevolution between a predatory protist and a prey bacterium

Temporal resource fluctuations could affect the strength of antagonistic coevolution through population dynamics and costs of adaptation. We studied this by coevolving the prey bacterium Serratia marcescens with the predatory protozoa Tetrahymena thermophila in constant and pulsed-resource environments for approximately 1300 prey generations. Consistent with arms race theory, the prey evolved to be more defended, whereas the predator evolved to be more efficient in consuming the bacteria. Coevolutionary adaptations were costly in terms of reduced prey growth in resource-limited conditions and less efficient predator growth on nonliving resource medium. However, no differences in mean coevol…

research product

Predation on Multiple Trophic Levels Shapes the Evolution of Pathogen Virulence

The pathogen virulence is traditionally thought to co-evolve as a result of reciprocal selection with its host organism. In natural communities, pathogens and hosts are typically embedded within a web of interactions with other species, which could affect indirectly the pathogen virulence and host immunity through trade-offs. Here we show that selection by predation can affect both pathogen virulence and host immune defence. Exposing opportunistic bacterial pathogen Serratia marcescens to predation by protozoan Tetrahymena thermophila decreased its virulence when measured as host moth Parasemia plantaginis survival. This was probably because the bacterial anti-predatory traits were traded o…

research product

The effect of prey resources on evolutionary and ecological dynamics of prey (Serratia marcescens) and predator (Tetrahymena thermophila)

research product

Life History Trade-Offs and Relaxed Selection Can Decrease Bacterial Virulence in Environmental Reservoirs

Pathogen virulence is usually thought to evolve in reciprocal selection with the host. While this might be true for obligate pathogens, the life histories of opportunistic pathogens typically alternate between within-host and outside-host environments during the infection-transmission cycle. As a result, opportunistic pathogens are likely to experience conflicting selection pressures across different environments, and this could affect their virulence through life-history trait correlations. We studied these correlations experimentally by exposing an opportunistic bacterial pathogen Serratia marcescens to its natural protist predator Tetrahymena thermophila for 13 weeks, after which we meas…

research product

High temperature and bacteriophages can indirectly select for bacterial pathogenicity in environmental reservoirs

The coincidental evolution hypothesis predicts that traits connected to bacterial pathogenicity could be indirectly selected outside the host as a correlated response to abiotic environmental conditions or different biotic species interactions. To investigate this, an opportunistic bacterial pathogen, Serratia marcescens, was cultured in the absence and presence of the lytic bacteriophage PPV (Podoviridae) at 25°C and 37°C for four weeks (N = 5). At the end, we measured changes in bacterial phage-resistance and potential virulence traits, and determined the pathogenicity of all bacterial selection lines in the Parasemia plantaginis insect model in vivo. Selection at 37°C increased bacterial…

research product

Interactive effects between diet and genotypes of host and pathogen define the severity of infection

Host resistance and parasite virulence are influenced by multiple interacting factors in complex natural communities. Yet, these interactive effects are seldom studied concurrently, resulting in poor understanding of host-pathogen-environment dynamics. Here, we investigated how the level of opportunist pathogen virulence, strength of host immunity and the host condition manipulated via diet affect the survival of wood tiger moth Parasemia plantaginis (Arctidae). Larvae from “low cuticular melanin” and “high cuticular melanin” (considered as low and high pathogen resistance, respectively) selection lines were infected with moderately and highly virulent bacteria strains of Serratia marcescen…

research product

Bacteriophage selection against a plasmid-encoded sex apparatus leads to the loss of antibiotic-resistance plasmids.

Antibiotic-resistance genes are often carried by conjugative plasmids, which spread within and between bacterial species. It has long been recognized that some viruses of bacteria (bacteriophage; phage) have evolved to infect and kill plasmid-harbouring cells. This raises a question: can phages cause the loss of plasmid-associated antibiotic resistance by selecting for plasmid-free bacteria, or can bacteria or plasmids evolve resistance to phages in other ways? Here, we show that multiple antibiotic-resistance genes containing plasmids are stably maintained in bothEscherichia coliandSalmonella entericain the absence of phages, while plasmid-dependent phage PRD1 causes a dramatic reduction i…

research product

Data from: Fluctuating temperature leads to evolution of thermal generalism and preadaptation to novel environments

Environmental fluctuations can select for generalism, which is also hypothesized to increase organisms’ ability to invade novel environments. Here, we show that across a range of temperatures, opportunistic bacterial pathogen Serratia marcescens that evolved in fluctuating temperature (daily variation between 24°C and 38°C, mean 31°C) outperforms the strains that evolved in constant temperature (31°C). The growth advantage was also evident in novel environments in the presence of parasitic viruses and predatory protozoans, but less clear in the presence of stressful chemicals. Adaptation to fluctuating temperature also led to reduced virulence in Drosophila melanogaster host, which suggests…

research product

High Temperature and Bacteriophages Can Indirectly Select for Bacterial Pathogenicity in Environmental Reservoirs

The coincidental evolution hypothesis predicts that traits connected to bacterial pathogenicity could be indirectly selected outside the host as a correlated response to abiotic environmental conditions or different biotic species interactions. To investigate this, an opportunistic bacterial pathogen, Serratia marcescens, was cultured in the absence and presence of the lytic bacteriophage PPV (Podoviridae) at 25uC and 37uC for four weeks (N = 5). At the end, we measured changes in bacterial phage-resistance and potential virulence traits, and determined the pathogenicity of all bacterial selection lines in the Parasemia plantaginis insect model in vivo. Selection at 37uC increased bacterial…

research product

Predation on Multiple Trophic Levels Shapes the Evolution of Pathogen Virulence

The pathogen virulence is traditionally thought to co-evolve as a result of reciprocal selection with its host organism. In natural communities, pathogens and hosts are typically embedded within a web of interactions with other species, which could affect indirectly the pathogen virulence and host immunity through trade-offs. Here we show that selection by predation can affect both pathogen virulence and host immune defence. Exposing opportunistic bacterial pathogen Serratia marcescens to predation by protozoan Tetrahymena thermophila decreased its virulence when measured as host moth Parasemia plantaginis survival. This was probably because the bacterial anti-predatory traits were traded o…

research product