0000000001306683

AUTHOR

Mark J. F. Brown

showing 4 related works from this author

Rapid induction of immune density-dependent prophylaxis in adult social insects.

2009

The innate immune system provides defence against parasites and pathogens. This defence comes at a cost, suggesting that immune function should exhibit plasticity in response to variation in environmental threats. Density-dependent prophylaxis (DDP) has been demonstrated mostly in phase-polyphenic insects, where larval group size determines levels of immune function in either adults or later larval instars. Social insects exhibit extreme sociality, but DDP has been suggested to be absent from these ecologically dominant taxa. Here we show that adult bumble-bee workers ( Bombus terrestris ) exhibit rapid plasticity in their immune function in response to social context. These results sugges…

0106 biological sciencesdensity-dependent prophylaxisZoology[ SDV.IMM.IA ] Life Sciences [q-bio]/Immunology/Adaptive immunology010603 evolutionary biology01 natural sciences03 medical and health sciencesImmune system[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisAnimalsinnate immunitySociality030304 developmental biologyPopulation Density[ SDE.BE ] Environmental Sciences/Biodiversity and EcologyEvolutionary Biology0303 health sciencesLarvaInnate immune systembiologyEcologyfungiAge FactorsAdult insectBeessocialitybiology.organism_classificationAdaptation PhysiologicalAgricultural and Biological Sciences (miscellaneous)Immunity InnateBombus[SDV.IMM.IA]Life Sciences [q-bio]/Immunology/Adaptive immunologyDensity dependentBombus terrestrisInstar[SDE.BE]Environmental Sciences/Biodiversity and EcologyGeneral Agricultural and Biological Sciences[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosis
researchProduct

Parasite and host assemblages: embracing the reality will improve our knowledge of parasite transmission and virulence.

2010

10 pages; International audience; Interactions involving several parasite species (multi-parasitized hosts) or several host species (multi-host parasites) are the rule in nature. Only a few studies have investigated these realistic, but complex, situations from an evolutionary perspective. Consequently, their impact on the evolution of parasite virulence and transmission remains poorly understood. The mechanisms by which multiple infections may influence virulence and transmission include the dynamics of intrahost competition, mediation by the host immune system and an increase in parasite genetic recombination. Theoretical investigations have yet to be conducted to determine which of these…

0106 biological sciences[ SDV.MP.PAR ] Life Sciences [q-bio]/Microbiology and Parasitology/Parasitologymulti-parasitized hostsmedia_common.quotation_subjectEcology (disciplines)Virulenceinterspecies transmissionBiologyModels Biological010603 evolutionary biology01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyCompetition (biology)Host-Parasite InteractionsInterspecies transmission03 medical and health sciencesParasitic Diseases[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisAnimalsParasite hostingParasites[SDV.MP.PAR]Life Sciences [q-bio]/Microbiology and Parasitology/ParasitologyReview Articles030304 developmental biologyGeneral Environmental Sciencemedia_common0303 health sciences[ SDE.BE ] Environmental Sciences/Biodiversity and EcologyVirulenceGeneral Immunology and MicrobiologyEcologyTransmission (medicine)Host (biology)General MedicineBiological EvolutionObligate parasiteimmune systemEvolutionary biologymulti-host parasitesintrahost competitionepidemiology[SDE.BE]Environmental Sciences/Biodiversity and EcologyGeneral Agricultural and Biological Sciences[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/Symbiosis
researchProduct

DYNAMIC TRANSMISSION, HOST QUALITY, AND POPULATION STRUCTURE IN A MULTIHOST PARASITE OF BUMBLEBEES

2012

The evolutionary ecology of multihost parasites is predicted to depend upon patterns of host quality and the dynamics of transmission networks. Depending upon the differences in host quality and transmission asymmetries, as well as the balance between intra- and interspecific transmission, the evolution of specialist or generalist strategies is predicted. Using a trypanosome parasite of bumblebees, we ask how host quality and transmission networks relate to parasite population structure across host species, and thus the potential for the evolution of specialist strains adapted to different host species. Host species differed in quality, with parasite growth varying across host species. High…

0106 biological sciences0303 health sciencesHost (biology)EcologyPopulation geneticsInterspecific competitionBiologyGeneralist and specialist species010603 evolutionary biology01 natural sciencesObligate parasite03 medical and health sciencesEvolutionary biologyGeneticsParasite hostingEvolutionary ecologyAdaptationGeneral Agricultural and Biological SciencesEcology Evolution Behavior and Systematics030304 developmental biologyEvolution
researchProduct

Data from: Dynamic transmission, host quality and population structure in a multi-host parasite of bumble bees

2012

The evolutionary ecology of multi-host parasites is predicted to depend upon patterns of host quality and the dynamics of transmission networks. Depending upon the differences in host quality and transmission asymmetries, as well as the balance between intra- and inter-specific transmission, the evolution of specialist or generalist strategies is predicted. Using a trypanosome parasite of bumble bees we ask how host quality and transmission networks relate to parasite population structure across host species, and thus the potential for the evolution of specialist strains adapted to different host species. Host species differed in quality, with parasite growth varying across host species. Hi…

medicine and health careBombus pascuorumCrithidia bombitransmissionBombus lapidariusBombus pratorumMedicineimmune defenceBombus lucorumLife sciencesBombus
researchProduct