0000000001306885
AUTHOR
M. Kadler
Insights into the particle acceleration of a peculiar gamma -ray radio galaxy IC 310
IC 310 has recently been identified as a gamma-ray emitter based on observations at GeV energies with Fermi-LAT and at very high energies (VHE, E > 100 GeV) with the MAGIC telescopes. Despite IC 310 having been classified as a radio galaxy with the jet observed at an angle > 10 degrees, it exhibits a mixture of multiwavelength properties of a radio galaxy and a blazar, possibly making it a transitional object. On the night of 12/13th of November 2012 the MAGIC telescopes observed a series of violent outbursts from the direction of IC 310 with flux-doubling time scales faster than 5 min and a peculiar spectrum spreading over 2 orders of magnitude. Such fast variability constrains the size of…
γ-RAY AND PARSEC-SCALE JET PROPERTIES OF A COMPLETE SAMPLE OF BLAZARS FROM THE MOJAVE PROGRAM
著者人数: 145名
Search for Cosmic Neutrino Point Sources with Four Year Data of the ANTARES Telescope
In this paper, a time-integrated search for point sources of cosmic neutrinos is presented using the data collected from 2007 to 2010 by the ANTARES neutrino telescope. No statistically significant signal has been found and upper limits on the neutrino flux have been obtained. Assuming an E ¿2 n; spectrum, these flux limits are at 1-10 ¿10¿8 GeV cm¿2 s¿1 for declinations ranging from ¿90° to 40°. Limits for specific models of RX J1713.7¿3946 and Vela X, which include information on the source morphology and spectrum, are also given.
First search for point sources of high-energy cosmic neutrinos with the ANTARES neutrino telescope
Results are presented of a search for cosmic sources of high-energy neutrinos with the ANTARES neutrino telescope. The data were collected during 2007 and 2008 using detector configurations containing between 5 and 12 detection lines. The integrated live time of the analyzed data is 304 days. Muon tracks are reconstructed using a likelihood-based algorithm. Studies of the detector timing indicate a median angular resolution of 0.5 0.1deg. The neutrino flux sensitivity is 7.5 ¿ 10 -8(E ¿/ GeV) -2 GeV -1 s -1 cm -2 for the part of the sky that is always visible (¿ < -48deg), which is better than limits obtained by previous experiments. No cosmic neutrino sources have been observed.
Deep sea tests of a prototype of the KM3NeT digital optical module
SIRE(opens in a new window)|View at Publisher| Export | Download | Add to List | More... European Physical Journal C Volume 74, Issue 9, 1 September 2014, 8p Deep sea tests of a prototype of the KM3NeT digital optical module: KM3NeT Collaboration (Article) Adrián-Martínez, S.a, Ageron, M.b, Aharonian, F.c, Aiello, S.d, Albert, A.e, Ameli, F.f, Anassontzis, E.G.g, Anghinolfi, M.h, Anton, G.i, Anvar, S.j, Ardid, M.a, de Asmundis, R.k, Balasi, K.l, Band, H.m, Barbarino, G.kn, Barbarito, E.o, Barbato, F.kn, Baret, B.p, Baron, S.p, Belias, A.lq, Berbee, E.m, van den Berg, A.M.r, Berkien, A.m, Bertin, V.b, Beurthey, S.b, van Beveren, V.m, Beverini, N.st, Biagi, S.uv, Bianucci, S.t, Billault, M.b,…
The positioning system of the ANTARES Neutrino Telescope
The ANTARES neutrino telescope, located 40km off the coast of Toulon in the Mediterranean Sea at a mooring depth of about 2475m, consists of twelve detection lines equipped typically with 25 storeys. Every storey carries three optical modules that detect Cherenkov light induced by charged secondary particles (typically muons) coming from neutrino interactions. As these lines are flexible structures fixed to the sea bed and held taut by a buoy, sea currents cause the lines to move and the storeys to rotate. The knowledge of the position of the optical modules with a precision better than 10cm is essential for a good reconstruction of particle tracks. In this paper the ANTARES positioning sys…
SEARCHES FOR POINT-LIKE AND EXTENDED NEUTRINO SOURCES CLOSE TO THE GALACTIC CENTER USING THE ANTARES NEUTRINO TELESCOPE
A search for cosmic neutrino sources using six years of data collected by the ANTARES neutrino telescope has been performed. Clusters of muon neutrinos over the expected atmospheric background have been looked for. No clear signal has been found. The most signal-like accumulation of events is located at equatorial coordinates R.A. = -46º.8 and decl. = -64º.9 and corresponds to a 2.2 sigma background fluctuation. In addition, upper limits on the flux normalization of an E-2 muon neutrino energy spectrum have been set for 50 pre-selected astrophysical objects. Finally, motivated by an accumulation of seven events relatively close to the Galactic Center in the recently reported neutrino sample…
The NHXM observatory
Exploration of the X-ray sky has established X-ray astronomy as a fundamental astrophysical discipline. While our knowledge of the sky below 10 keV has increased dramatically (∼8 orders of magnitude) by use of grazing incidence optics, we still await a similar improvement above 10 keV, where to date only collimated instruments have been used. Also ripe for exploration is the field of X-ray polarimetry, an unused fundamental tool to understand the physics and morphology of X-ray sources. Here we present a novel mission, the New Hard X-ray Mission (NHXM) that brings together for the first time simultaneous high-sensitivity, hard-X-ray imaging, broadband spectroscopy and polarimetry. NHXM will…
Searches for clustering in the time integrated skymap of the ANTARES neutrino telescope
Adrián-Martínez, S. et al.
ANTARES constrains a blazar origin of two IceCube PeV neutrino events
Abstract Context. The source(s) of the neutrino excess reported by the IceCube Collaboration is unknown. The TANAMI Collaboration recently reported on the multiwavelength emission of six bright, variable blazars which are positionally coincident with two of the most energetic IceCube events. Objects like these are prime candidates to be the source of the highest-energy cosmic rays, and thus of associated neutrino emission. Aims. We present an analysis of neutrino emission from the six blazars using observations with the ANTARES neutrino telescope. Methods. The standard methods of the ANTARES candidate list search are applied to six years of data to search for an excess of muons and hence th…
Sub-parsec scale imaging of Centaurus A
At a distance of about 3.8 Mpc, the radio galaxy Centaurus A is the closest active galaxy. Therefore it is a key target for studying the innermost regions of active galactic nuclei (AGN). VLBI observations conducted within the framework of the TANAMI program enable us to study the central region of the Cen A jet with some of the highest linear resolutions ever achieved in an AGN. This region is the likely origin of the gamma-ray emission recently detected by the Fermi Large Area Telescope (LAT). TANAMI monitors a sample of radio and gamma-ray selected extragalactic jets south of -30 degrees declination at 8.4 GHz and 22.3 GHz with the Australian Long Baseline Array (LBA) and the transoceani…
Search for a diffuse flux of high-energy ¿µ with the ANTARES neutrino telescope
A search for a diffuse flux of astrophysical muon neutrinos, using data collected by the ANTARES neutrino telescope is presented. A $(0.83\times 2\pi)$ sr sky was monitored for a total of 334 days of equivalent live time. The searched signal corresponds to an excess of events, produced by astrophysical sources, over the expected atmospheric neutrino background. The observed number of events is found compatible with the background expectation. Assuming an $E^{-2}$ flux spectrum, a 90% c.l. upper limit on the diffuse $\nu_\mu$ flux of $E^2\Phi_{90%} = 5.3 \times 10^{-8} \ \mathrm{GeV\ cm^{-2}\ s^{-1}\ sr^{-1}} $ in the energy range 20 TeV - 2.5 PeV is obtained. Other signal models with differ…
SEARCH FOR A CORRELATION BETWEEN ANTARES NEUTRINOS AND PIERRE AUGER OBSERVATORY UHECRs ARRIVAL DIRECTIONS
A multimessenger analysis optimized for a correlation of arrival directions of ultra-high energy cosmic rays (UHECRs) and neutrinos is presented and applied to 2190 neutrino candidate events detected in 2007-2008 by the ANTARES telescope and 69 UHECRs observed by the Pierre Auger Observatory between 2004 January 1 and 2009 December 31. No significant correlation is observed. Assuming an equal neutrino flux (E-2 energy spectrum) from all UHECR directions, a 90% CL upper limit on the neutrino flux of 5.0 x 10(-8) GeV cm(-2) s(-1) per source is derived.
Catching the radio flare in CTA 102. II. VLBI kinematic analysis
Search for neutrino emission from gamma-ray flaring blazars with the ANTARES telescope
The ANTARES telescope observes a full hemisphere of the sky all the time with a duty cycle close to 100%. This makes it well suited for an extensive observation of neutrinos produced in astrophysical transient sources. In the surrounding medium of blazars, i.e. active galactic nuclei with their jets pointing almost directly towards the observer, neutrinos may be produced together with gamma-rays by hadronic interactions, so a strong correlation between neutrinos and gamma-rays emissions is expected. The time variability information of the studied source can be obtained by the gamma-ray light curves measured by the LAT instrument on-board the Fermi satellite. If the expected neutrino flux ob…
First results on dark matter annihilation in the Sun using the ANTARES neutrino telescope
A search for high-energy neutrinos coming from the direction of the Sun has been performed using the data recorded by the ANTARES neutrino telescope during 2007 and 2008. The neutrino selection criteria have been chosen to maximize the selection of possible signals produced by the self-annihilation of weakly interacting massive particles accumulated in the centre of the Sun with respect to the atmospheric background. After data unblinding, the number of neutrinos observed towards the Sun was found to be compatible with background expectations. The 90% CL upper limits in terms of spin-dependent and spin-independent WIMP-proton cross-sections are derived and compared to predictions of two sup…
Time calibration of the ANTARES neutrino telescope
The ANTARES deep-sea neutrino telescope comprises a three-dimensional array of photomultipliers to detect the Cherenkov light induced by upgoing relativistic charged particles originating from neutrino interactions in the vicinity of the detector. The large scattering length of light in the deep sea facilitates an angular resolution of a few tenths of a degree for neutrino energies exceeding 10 TeV. In order to achieve this optimal performance, the time calibration procedures should ensure a relative time calibration between the photomultipliers at the level of ~1 ns. The methods developed to attain this level of precision are described.
Structural variability of 3C 111 on parsec scales
We discuss the parsec-scale structural variability of the extragalactic jet 3C 111 related to a major radio flux density outburst in 2007. The data analyzed were taken within the scope of the MOJAVE, UMRAO, and F-GAMMA programs, which monitor a large sample of the radio brightest compact extragalactic jets with the VLBA, the University of Michigan 26 m, the Effelsberg 100 m, and the IRAM 30 m radio telescopes. The analysis of the VLBA data is performed by fitting Gaussian model components in the visibility domain. We associate the ejection of bright features in the radio jet with a major flux-density outburst in 2007. The evolution of these features suggests the formation of a leading compo…
Catching the radio flare in CTA 102. III. Core-shift and spectral analysis
Catching the radio flare in CTA 102
We performed multifrequency multiepoch Very Long Baseline Array (VLBA) observations of the blazar CTA 102 during its 2006 radio flare, the strongest ever reported for this source. These observations provide an excellent opportunity to investigate the evolution of the physical properties of blazars, especially during these flaring events. We want to study the kinematic changes in the source during the strong radio outburst in April 2006 and test the assumption of a shock-shock interaction. This assumption is based on the analysis and modeling of the single-dish observations of CTA\,102 (Paper I). In this paper we study the kinematics of CTA 102 at several frequencies using VLBI observations.…
Search for relativistic magnetic monopoles with the ANTARES neutrino telescope
Magnetic monopoles are predicted in various unified gauge models and could be produced at intermediate mass scales. Their detection in a neutrino telescope is facilitated by the large amount of light emitted compared to that from muons. This paper reports on a search for upgoing relativistic magnetic monopoles with the ANTARES neutrino telescope using a data set of 116 days of live time taken from December 2007 to December 2008. The one observed event is consistent with the expected atmospheric neutrino and muon background, leading to a 90% C.L. upper limit on the monopole flux between 1.3 ¿ 10¿17 and 8.9 ¿ 10¿17 cm¿2 s¿1 sr¿1 for monopoles with velocity ß ¿ 0.625.
A search for neutrino emission from the Fermi bubbles with the ANTARES telescope
Adrián-Martínez, S. et al.
Deep sea tests of a prototype of the KM3NeT digital optical module: KM3NeT Collaboration
The first prototype of a photo-detection unit of the future KM3NeT neutrino telescope has been deployed in the deep waters of the Mediterranean Sea. This digital optical module has a novel design with a very large photocathode area segmented by the use of 31 three inch photomultiplier tubes. It has been integrated in the ANTARES detector for in-situ testing and validation. This paper reports on the first months of data taking and rate measurements. The analysis results highlight the capabilities of the new module design in terms of background suppression and signal recognition. The directionality of the optical module enables the recognition of multiple Cherenkov photons from the same $^{40…
A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007
A search for high-energy neutrinos coming from the direction of the Sun has been performed using the data recorded by the ANTARES neutrino telescope during 2007 and 2008. The neutrino selection criteria have been chosen to maximize the selection of possible signals produced by the self-annihilation of weakly interacting massive particles accumulated in the centre of the Sun with respect to the atmospheric background. After data unblinding, the number of neutrinos observed towards the Sun was found to be compatible with background expectations. The 90% CL upper limits in terms of spin-dependent and spin-independent WIMP-proton cross-sections are derived and compared to predictions of two sup…
Measurement of the group velocity of light in sea water at the ANTARES site
The group velocity of light has been measured at eight different wavelengths between 385 nm and 532 nm in the Mediterranean Sea at a depth of about 2.2 km with the ANTARES optical beacon systems. A parametrisation of the dependence of the refractive index on wavelength based on the salinity, pressure and temperature of the sea water at the ANTARES site is in good agreement with these measurements.
Insights into the particle acceleration of a peculiar gamma -ray radio galaxy IC 310
IC 310 has recently been identified as a gamma-ray emitter based on observations at GeV energies with Fermi-LAT and at very high energies (VHE, E > 100 GeV) with the MAGIC telescopes. Despite IC 310 having been classified as a radio galaxy with the jet observed at an angle > 10 degrees, it exhibits a mixture of multiwavelength properties of a radio galaxy and a blazar, possibly making it a transitional object. On the night of 12/13th of November 2012 the MAGIC telescopes observed a series of violent outbursts from the direction of IC 310 with flux-doubling time scales faster than 5 min and a peculiar spectrum spreading over 2 orders of magnitude. Such fast variability constrains the s…
ANTARES: The first undersea neutrino telescope
The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given. © 2011 Elsevier B.V. All rights reserved.
Constraining the neutrino emission of gravitationally lensed Flat-Spectrum Radio Quasars with ANTARES data
This paper proposes to exploit gravitational lensing effects to improve the sensitivity of neutrino telescopes to the intrinsic neutrino emission of distant blazar populations. This strategy is illustrated with a search for cosmic neutrinos in the direction of four distant and gravitationally lensed Flat-Spectrum Radio Quasars. The magnification factor is estimated for each system assuming a singular isothermal profile for the lens. Based on data collected from 2007 to 2012 by the ANTARES neutrino telescope, the strongest constraint is obtained from the lensed quasar B0218+357, providing a limit on the total neutrino luminosity of this source of 1.08×10^46 erg s-1. This limit is about one o…
The aftermath of an exceptional tev flare in the agn jet of ic 310
The nearby active galaxy IC 310 (z=0.019), located in the Perseus cluster of galaxies is a bright and variable multi-wavelength emitter from the radio regime up to very high gamma-ray energies above 100 GeV. Very recently, a blazar-like compact radio jet has been found by parsec-scale VLBI imaging. Along with the unusually flat gamma-ray spectrum and variable high-energy emission, this suggests that IC 310 is the closest known blazar and therefore a key object for AGN research. As part of an intense observing program at TeV energies with the MAGIC telescopes, an exceptionally bright flare of IC 310 was detected in November 2012 reaching a flux level of up to >0.5 Crab units above 300 GeV…
Measurement of the atmospheric ?µ energy spectrum from 100 GeV to 200 TeV with the ANTARES telescope
Atmospheric neutrinos are produced during cascades initiated by the interaction of primary cosmic rays with air nuclei. In this paper, a measurement of the atmospheric energy spectrum in the energy range 0.1-200 TeV is presented, using data collected by the ANTARES underwater neutrino telescope from 2008 to 2011. Overall, the measured flux is similar to 25 % higher than predicted by the conventional neutrino flux, and compatible with the measurements reported in ice. The flux is compatible with a single power-law dependence with spectral index gamma (meas)=3.58 +/- 0.12. With the present statistics the contribution of prompt neutrinos cannot be established.
MOJAVE VII. Blazar jet acceleration
We discuss acceleration measurements for a large sample of extragalactic radio jets from the Monitoring Of Jets in Active Galactic Nuclei with VLBA Experiments (MOJAVE) program, which studies the parsec-scale jet structure and kinematics of a complete, flux-density-limited sample of active galactic nuclei (AGNs). Accelerations are measured from the apparent motion of individual jet features or "components" which may represent patterns in the jet flow. We find that significant accelerations are common both parallel and perpendicular to the observed component velocities. Cone search capability for table J/ApJ/706/1253/agn (Positions for AGN sources)
Catching the radio flare in CTA 102
Very Long Baseline Interferometry (VLBI) observations can resolve the radio structure of active galactic nuclei (AGN) and provide estimates of the structural and kinematic characteristics on parsec-scales in their jets. The changes in the kinematics of the observed jet features can be used to study the physical conditions in the innermost regions of these sources. We performed multifrequency multiepoch Very Long Baseline Array (VLBA) observations of the blazar CTA102 during its 2006 radio flare, the strongest ever reported for this source. These observations provide an excellent opportunity to investigate the evolution of the physical properties of blazars, especially during these flaring e…
Dynamic SEDs of southern blazars - DSSB
The Dynamic SEDs of southern blazars catalog is based on a TANAMI multiwavelength project that has been monitoring a sample of 22 radio-loud blazars of the southern sky from radio to gamma-ray wavelengths. (4 data files). Simultaneous broadband spectral and temporal studies of blazars are an important tool for investigating active galactic nuclei (AGN) jet physics. Aims. We study the spectral evolution between quiescent and flaring periods of 22 radio-loud AGN through multiepoch, quasi-simultaneous broadband spectra. For many of these sources these are the first broadband studies. Methods. We use a Bayesian block analysis of Fermi/LAT light curves to determine time ranges of constant flux f…
TANAMI II. Additional sources
TANAMI is a multiwavelength program monitoring active galactic nuclei (AGN) south of -30{deg} declination including high-resolution Very Long Baseline Interferometry (VLBI) imaging, radio, optical/UV, X-ray and {gamma}-ray studies. We have previously published first-epoch 8.4GHz VLBI images of the parsec-scale structure of the initial sample. In this paper, we present images of 39 additional sources. The full sample comprises most of the radio- and {gamma}-ray brightest AGN in the southern quarter of the sky, overlapping with the region from which high-energy (>100TeV) neutrino events have been found. We characterize the parsec-scale radio properties of the jets and compare with the quasi-s…
15GHz and jet properties of MOJAVE blazars
We investigate the Fermi Large Area Telescope {gamma}-ray and 15GHz Very Long Baseline Array radio properties of a joint {gamma}-ray and radio-selected sample of active galactic nuclei (AGNs) obtained during the first 11 months of the Fermi mission (2008 August 4-2009 July 5). Our sample contains the brightest 173 AGNs in these bands above declination -30{deg} during this period, and thus probes the full range of {gamma}-ray loudness ({gamma}-ray to radio band luminosity ratio) in the bright blazar population. The latter quantity spans at least 4 orders of magnitude, reflecting a wide range of spectral energy distribution (SED) parameters in the bright blazar population. The BL Lac objects,…
Jet collimation in NGC 315
VizieR online Data Catalogue associated with article published in journal Astronomy & Astrophysics with title 'Jet collimation in NGC 315 and other nearby AGN.' (bibcode: 2021A&A...647A..67B)
LOFAR images of blazar S5 0836+710
The emission and proper motion of the terminal hotspots of active galactic nucleus (AGN) jets can be used as a powerful probe of the intergalactic medium. However, measurements of hotspot advance speeds in active galaxies are difficult, especially in the young universe, because of the low angular velocities and the low brightness of distant radio galaxies. Our goal is to study the termination of an AGN jet in the young universe and to deduce physical parameters of the jet and the intergalactic medium. We used the LOw Frequency ARray (LOFAR) to image the long-wavelength radio emission of the high-redshift blazar S5 0836+710 on arcsecond scales between 120MHz and 160MHz. The LOFAR image shows…