0000000001307161
AUTHOR
Yannick Coppel
Inside Cover: Hydrogen-Bonded Open-Framework with Pyridyl-Decorated Channels: Straightforward Preparation and Insight into Its Affinity for Acidic Molecules in Solution (Chem. Eur. J. 49/2017)
International audience; A hydrogen-bonded open framework with pores decorated by pyridyl groups was constructed by off-charge-stoichiometry assembly of protonated tetrakis(4-pyridyloxymethyl)methane and [Al(oxalate)(3)](3-), which are the H-bond donor and acceptor of ionic H-bond interactions, respectively. This supramolecular porous architecture (SPA-2) has 1nm-large pores interconnected in 3D with large solvent-accessible void (53%). It demonstrated remarkable affinity for acidic organic molecules in solution, which was investigated by means of various carboxylic acids including larger drug molecules. Competing sorption between acetic acid and its halogenated homologues evidenced good sel…
First Dibenzophospholyl(diphenylphosphino)methane−Borane Hybrid P−(η2-BH3) Ligand: Synthesis and Rhodium(I) Complex
The first dibenzophospholyl(diphenylphosphino)methane−borane hybrid ligand has been prepared from a Pd-catalyzed reaction of (chloromethyl)diphenylphosphine−borane with the dibenzophospholyl anion. This borane precursor is readily synthesized using a promising new reaction of diphenylphosphine−borane with dichloromethane, under phase transfer catalysis (PTC) conditions. The dibenzophospholyl(diphenylphosphino)methane−borane acts as a chelating P−(η2-BH3) ligand to afford an air-stable Rh(I) complex. The X-ray crystal structure of this complex shows complexation of both benzophospholyl and borane moieties.
Hydrogen-Bonded Open-Framework with Pyridyl-Decorated Channels: Straightforward Preparation and Insight into Its Affinity for Acidic Molecules in Solution.
International audience; An hydrogen-bonded open framework with pores decorated by pyridyl groups has been constructed following an off-charge-stoichiometry assemblage of protonated tetrakis(4-pyridyl-oxymethyl)methane and [Al(oxalate)3]3-, respectively the H-bond donor and acceptor of the ionic H-bond interactions. This supramolecular porous architecture (SPA-2) possesses 1 nm-large pores interconnected in 3D with high solvent accessible void (53%). It demonstrated remarkable affinity for acidic organic molecules in solution, which was investigated by the means of various carboxylic acids including larger drug molecules. Noteworthy, competing sorption between acetic acid and its halogenated…
Conformational Control of Metallocene Backbone by Cyclopentadienyl Ring Substitution: a New Concept in Polyphosphane Ligands Evidenced by “Through-Space” Nuclear Spin-Spin Coupling. Application in heteroaromatics arylation by direct C–H activation
The present study deals with the conformational control of the metallocene backbone within ferrocenyl polyphosphane ligands and their performance in the highly topical palladium-catalyzed heteroaromatics arylation by direct C−H activation. New substituted cyclopentadienyl rings were synthesized, which allowed the assembling of original tri- and diphosphanes. The bulky cyclopentadienyl lithium salts diphenylphosphino-3-(triphenyl)methylcyclopentadienyllithium (4) and 1,2-bis(diphenylphosphino)-4-(triphenyl)methylcyclopentadienyllithium (5) were prepared in excellent yield. The assembling of these new hindered cyclopentadienyl salts (Cp) with other Cp fragments was performed in order to prepa…
Nanocatalysts for High Selectivity Enyne Cyclization: Oxidative Surface Reorganization of Gold Sub-2-nm Nanoparticle Networks
International audience; Ultrasmall gold nanoparticles (NPs) stabilized in networks by polymantane ligands (diamondoids) were successfully used as precatalysts for highly selective heterogeneous gold-catalyzed dimethyl allyl(propargyl)malonate cyclization to 5-membered conjugated diene. Such reaction usually suffers from selectivity issues with homogeneous catalysts. This control over selectivity further opened the way to one-pot cascade reaction, as illustrated by the 1,6-enyne cycloisomerization–Diels–Alder reaction of dimethyl allyl propargyl malonate with maleic anhydride. The ability to assemble nanoparticles with controllable sizes and shapes within networks concerns research in sensor…
A family of enneanuclear iron(II) single-molecule magnets.
Complexes [Fe 9 (X) 2 -(02CMe)8{(2-py) 2 CO 2 } 4 ] (X - = OH (1), N 3 - (2), and NCO- (3)) have been prepared by a route previously employed for the synthesis of analogous Co 9 and Ni 9 complexes, involving hydroxide substitution by pseudohalides (N 3 - , NCO-). As indicated by DC magnetic susceptibility measurements, this substitution induced higher ferromagnetic couplings in complexes 2 and 3, leading to higher ground spin states compared to that of 1. Variable-field experiments have shown that the ground state is not well isolated from excited states, as a result of which it cannot be unambiguously determined. AC susceptometry has revealed out-of-phase signals, which suggests that these…
CCDC 1537659: Experimental Crystal Structure Determination
Related Article: Georges Mouchaham, Nans Roques, Walid Khodja, Carine Duhayon, Yannick Coppel, Stéphane Brandès, Tamás Fodor, Michel Meyer and Jean-Pascal Sutter|2017|Chem.-Eur.J.|23|11818|doi:10.1002/chem.201701732
CCDC 1537661: Experimental Crystal Structure Determination
Related Article: Georges Mouchaham, Nans Roques, Walid Khodja, Carine Duhayon, Yannick Coppel, Stéphane Brandès, Tamás Fodor, Michel Meyer and Jean-Pascal Sutter|2017|Chem.-Eur.J.|23|11818|doi:10.1002/chem.201701732
CCDC 1537660: Experimental Crystal Structure Determination
Related Article: Georges Mouchaham, Nans Roques, Walid Khodja, Carine Duhayon, Yannick Coppel, Stéphane Brandès, Tamás Fodor, Michel Meyer and Jean-Pascal Sutter|2017|Chem.-Eur.J.|23|11818|doi:10.1002/chem.201701732
CCDC 1537663: Experimental Crystal Structure Determination
Related Article: Georges Mouchaham, Nans Roques, Walid Khodja, Carine Duhayon, Yannick Coppel, Stéphane Brandès, Tamás Fodor, Michel Meyer and Jean-Pascal Sutter|2017|Chem.-Eur.J.|23|11818|doi:10.1002/chem.201701732
CCDC 1537662: Experimental Crystal Structure Determination
Related Article: Georges Mouchaham, Nans Roques, Walid Khodja, Carine Duhayon, Yannick Coppel, Stéphane Brandès, Tamás Fodor, Michel Meyer and Jean-Pascal Sutter|2017|Chem.-Eur.J.|23|11818|doi:10.1002/chem.201701732