0000000001307185

AUTHOR

Víctor Rubio-giménez

Integrated Cleanroom Process for the Vapor-Phase Deposition of Large-Area Zeolitic Imidazolate Framework Thin Films

Chemistry of materials XX(XX), acs.chemmater.9b03435 (2019). doi:10.1021/acs.chemmater.9b03435

research product

Electrical conductivity and magnetic bistability in metal–organic frameworks and coordination polymers: charge transport and spin crossover at the nanoscale

Materials scientists are currently shifting from purely inorganic, organic and silicon-based materials towards hybrid organic–inorganic materials to develop increasingly complex and powerful electronic devices. In this context, it is undeniable that conductive metal–organic frameworks (MOFs) and bistable coordination polymers (CPs) are carving a niche for themselves in the electronics world. The tunability and processability of these materials alongside the combination of electrical conductivity with porosity or spin transition offers unprecedented technological opportunities for their integration into functional devices. This review aims to summarise the chemical strategies tha…

research product

Surfactant-assisted synthesis of titanium nanoMOFs for thin film fabrication

We use dodecanoic acid as a modulator to yield titanium MOF nanoparticles with good control of size and colloid stability and minimum impact to the properties of the framework to enable direct fabrication of crystalline, porous thin films. ispartof: CHEMICAL COMMUNICATIONS vol:57 issue:72 pages:9040-9043 ispartof: location:England status: published

research product

Correction: Effect of nanostructuration on the spin crossover transition in crystalline ultrathin films

Correction for ‘Effect of nanostructuration on the spin crossover transition in crystalline ultrathin films’ by Víctor Rubio-Giménez et al., Chem. Sci., 2019, DOI: 10.1039/c8sc04935a.

research product

Spontaneous Magnetization in Heterometallic NiFe-MOF-74 Microporous Magnets by Controlled Iron Doping

We report the direct synthesis of mixed-metal NiFe-MOF-74 solids that display combination of porosity with ferrimagnetic ordering. Compared to the undoped Ni phase, controlled doping with Fe enables to modify intra and interchain magnetic interactions for the onset of spontaneous magnetization at temperatures fixed by the doping level. Synthesis of porous magnets remains somewhat elusive due to the difficulties in isolating foreseeable metal-organic architectures that combine small bridging linkers, for strong magnetic coupling, with polyaromatic connectors responsible for porosity. In turn, we demonstrate that metal doping is better fitted to modify the magnetism of Metal-Organic Framework…

research product

Effect of nanostructuration on the spin crossover transition in crystalline ultrathin films† †Electronic supplementary information (ESI) available: Materials and methods, supplementary figures and tables. See DOI: 10.1039/c8sc04935a

Film thickness and microstructure critically affect the spin crossover transition of a 2D coordination polymer.

research product

High-Quality Metal–Organic Framework Ultrathin Films for Electronically Active Interfaces

Currently available methodologies arguably lack the exquisite control required for producing metal-organic framework (MOF) thin films of sufficient quality for electronic applications. By directing MOF transfer with self-assembled monolayers (SAMs), we achieve very smooth, homogeneous, highly oriented, ultrathin films across millimeter-scale areas that display moderate conductivity likely due to electron hopping. Here, the SAM is key for directing the transfer thereby enlarging the number and nature of the substrates of choice. We have exploited this versatility to evolve from deposition onto standard Si and Au to nonconventional substrates such as ferromagnetic Permalloy. We believe that t…

research product

Spontaneous growth of 2D coordination polymers on functionalized ferromagnetic surfaces

2D coordination polymers grow spontaneously on reactive surfaces due to surface oxidation. The growth process is observed in real time.

research product

Epitaxial Thin-Film vs Single Crystal Growth of 2D Hofmann-Type Iron(II) Materials: A Comparative Assessment of their Bi-Stable Spin Crossover Properties

Integration of the ON-OFF cooperative spin crossover (SCO) properties of FeII coordination polymers as components of electronic and/or spintronic devices is currently an area of great interest for potential applications. This requires the selection and growth of thin films of the appropriate material onto selected substrates. In this context, two new series of cooperative SCO two-dimensional FeII coordination polymers of the Hofmann-type formulated {FeII(Pym)2[MII(CN)4]·xH2O}n and {FeII(Isoq)2[MII(CN)4]}n (Pym = pyrimidine, Isoq = isoquinoline; MII = Ni, Pd, Pt) have been synthesized, characterized, and the corresponding Pt derivatives selected for fabrication of thin films by liquid-phase …

research product

Ultrathin Films of 2D Hofmann-Type Coordination Polymers: Influence of Pillaring Linkers on Structural Flexibility and Vertical Charge Transport

Searching for novel materials and controlling their nanostructuration into electronic devices is a challenging task ahead of chemists and chemical engineers. Even more so when this new application requires an exquisite control over the morphology, crystallinity, roughness and orientation of the films produced. In this context, it is of critical importance to analyze the influence of the chemical composition of perspective materials on their properties at the nanoscale. We report the fabrication of ultrathin films (thickness < 30 nm) of a family of FeII Hofmann-like coordination polymers by using an optimized liquid phase epitaxy (LPE) set-up. The series [Fe(L)2{Pt(CN)4}] (L = pyridine, pyri…

research product

Origin of the Chemiresistive Response of Ultrathin Films of Conductive Metal–Organic Frameworks

Conductive metal-organic frameworks are opening new perspectives for the use of these porous materials for applications traditionally limited to more classical inorganic materials, such as their integration into electronic devices. This has enabled the development of chemiresistive sensors capable of transducing the presence of specific guests into an electrical response with good selectivity and sensitivity. By combining experimental data with computational modelling, a possible origin for the underlying mechanism of this phenomenon in ultrathin films (ca. 30 nm) of Cu-CAT-1 is described. ispartof: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION vol:57 issue:46 pages:15086-15090 ispartof: location…

research product

Bottom‐Up Fabrication of Semiconductive Metal-Organic Framework Ultrathin Films

Though generally considered insulating, recent progress on the discovery of conductive porous metal-organic frameworks (MOFs) offers new opportunities for their integration as electroactive components in electronic devices. Compared to classical semiconductors, these metal-organic hybrids combine the crystallinity of inorganic materials with easier chemical functionalization and processability. Still, future development depends on the ability to produce high-quality films with fine control over their orientation, crystallinity, homogeneity, and thickness. Here self-assembled monolayer substrate modification and bottom-up techniques are used to produce preferentially oriented, ultrathin, con…

research product

CCDC 1989161: Experimental Crystal Structure Determination

Related Article: Carlos Bartual-Murgui, Víctor Rubio-Giménez, Manuel Meneses-Sánchez, Francisco Javier Valverde-Muñoz, Sergio Tatay, Carlos Martí-Gastaldo, M. Carmen Muñoz, José Antonio Real|2020|ACS Applied Materials and Interfaces|12|29461|doi:10.1021/acsami.0c05733

research product

CCDC 1989160: Experimental Crystal Structure Determination

Related Article: Carlos Bartual-Murgui, Víctor Rubio-Giménez, Manuel Meneses-Sánchez, Francisco Javier Valverde-Muñoz, Sergio Tatay, Carlos Martí-Gastaldo, M. Carmen Muñoz, José Antonio Real|2020|ACS Applied Materials and Interfaces|12|29461|doi:10.1021/acsami.0c05733

research product

CCDC 1989157: Experimental Crystal Structure Determination

Related Article: Carlos Bartual-Murgui, Víctor Rubio-Giménez, Manuel Meneses-Sánchez, Francisco Javier Valverde-Muñoz, Sergio Tatay, Carlos Martí-Gastaldo, M. Carmen Muñoz, José Antonio Real|2020|ACS Applied Materials and Interfaces|12|29461|doi:10.1021/acsami.0c05733

research product

CCDC 1910990: Experimental Crystal Structure Determination

Related Article: Carlos Bartual-Murgui, Víctor Rubio-Giménez, Manuel Meneses-Sánchez, Francisco Javier Valverde-Muñoz, Sergio Tatay, Carlos Martí-Gastaldo, M. Carmen Muñoz, José Antonio Real|2020|ACS Applied Materials and Interfaces|12|29461|doi:10.1021/acsami.0c05733

research product

CCDC 1989159: Experimental Crystal Structure Determination

Related Article: Carlos Bartual-Murgui, Víctor Rubio-Giménez, Manuel Meneses-Sánchez, Francisco Javier Valverde-Muñoz, Sergio Tatay, Carlos Martí-Gastaldo, M. Carmen Muñoz, José Antonio Real|2020|ACS Applied Materials and Interfaces|12|29461|doi:10.1021/acsami.0c05733

research product

CCDC 1910992: Experimental Crystal Structure Determination

Related Article: Carlos Bartual-Murgui, Víctor Rubio-Giménez, Manuel Meneses-Sánchez, Francisco Javier Valverde-Muñoz, Sergio Tatay, Carlos Martí-Gastaldo, M. Carmen Muñoz, José Antonio Real|2020|ACS Applied Materials and Interfaces|12|29461|doi:10.1021/acsami.0c05733

research product

CCDC 1910991: Experimental Crystal Structure Determination

Related Article: Carlos Bartual-Murgui, Víctor Rubio-Giménez, Manuel Meneses-Sánchez, Francisco Javier Valverde-Muñoz, Sergio Tatay, Carlos Martí-Gastaldo, M. Carmen Muñoz, José Antonio Real|2020|ACS Applied Materials and Interfaces|12|29461|doi:10.1021/acsami.0c05733

research product

CCDC 1910989: Experimental Crystal Structure Determination

Related Article: Carlos Bartual-Murgui, Víctor Rubio-Giménez, Manuel Meneses-Sánchez, Francisco Javier Valverde-Muñoz, Sergio Tatay, Carlos Martí-Gastaldo, M. Carmen Muñoz, José Antonio Real|2020|ACS Applied Materials and Interfaces|12|29461|doi:10.1021/acsami.0c05733

research product

CCDC 1989162: Experimental Crystal Structure Determination

Related Article: Carlos Bartual-Murgui, Víctor Rubio-Giménez, Manuel Meneses-Sánchez, Francisco Javier Valverde-Muñoz, Sergio Tatay, Carlos Martí-Gastaldo, M. Carmen Muñoz, José Antonio Real|2020|ACS Applied Materials and Interfaces|12|29461|doi:10.1021/acsami.0c05733

research product

CCDC 1989158: Experimental Crystal Structure Determination

Related Article: Carlos Bartual-Murgui, Víctor Rubio-Giménez, Manuel Meneses-Sánchez, Francisco Javier Valverde-Muñoz, Sergio Tatay, Carlos Martí-Gastaldo, M. Carmen Muñoz, José Antonio Real|2020|ACS Applied Materials and Interfaces|12|29461|doi:10.1021/acsami.0c05733

research product