0000000001307619
AUTHOR
Jessica N. Boynton
Effects of Remote Ligand Substituents on the Structures, Spectroscopic, and Magnetic Properties of Two-Coordinate Transition-Metal Thiolate Complexes
The first-row transition-metal(II) dithiolates M(SAriPr4)2 [AriPr4 = C6H3-2,6-(C6H3-2,6-iPr2)2; M = Cr (1), Mn (3), Fe (4), Co (5), Ni (6), and Zn (7)] and Cr(SArMe6)2 [2; ArMe6 = C6H3-2,6-(C6H2-2,4,6-Me3)2] and the ligand-transfer reagent (NaSAriPr4)2 (8) are described. In contrast to their M(SAriPr6)2 (M = Cr, Mn, Fe, Co, Ni, and Zn; AriPr6 = C6H3-2,6-(C6H2-2,4,6-iPr3)2) congeners, which differ from 1 and 3-6 in having p-isopropyl groups on the flanking aryl rings of the terphenyl substituents, compounds 1 and 4-6 display highly bent coordination geometries with S-M-S angles of 109.802(2)° (1), 120.2828(3)° (4), 91.730(3)° (5), and 92.68(2)° (6) as well as relatively close metal-flanking …
Counterintuitive Mechanisms of the Addition of Hydrogen and Simple Olefins to Heavy Group 13 Alkene Analogues
The mechanism of the reaction of olefins and hydrogen with dimetallenes ArMMAr (Ar = aromatic group; M = Al or Ga) was studied by density functional theory calculations and experimental methods. The digallenes, for which the most experimental data are available, are extensively dissociated to gallanediyl monomers, :GaAr, in hydrocarbon solution, but the calculations and experimental data showed also that they react with simple olefins, such as ethylene, as intact ArGaGaAr dimers via stepwise [2 + 2 + 2] cycloadditions due to their considerably lower activation barriers vis-à-vis the gallanediyl monomers, :GaAr. This pathway was preferred over the [2 + 2] cycloaddition of olefin to monomeric…
CCDC 1555899: Experimental Crystal Structure Determination
Related Article: Jade Pratt, Aimee M. Bryan, Michelle Faust, Jessica N. Boynton, Petra Vasko, Brian D. Rekken, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2018|Inorg.Chem.|57|6491|doi:10.1021/acs.inorgchem.8b00551
CCDC 1828738: Experimental Crystal Structure Determination
Related Article: Jade Pratt, Aimee M. Bryan, Michelle Faust, Jessica N. Boynton, Petra Vasko, Brian D. Rekken, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2018|Inorg.Chem.|57|6491|doi:10.1021/acs.inorgchem.8b00551
CCDC 1555900: Experimental Crystal Structure Determination
Related Article: Jade Pratt, Aimee M. Bryan, Michelle Faust, Jessica N. Boynton, Petra Vasko, Brian D. Rekken, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2018|Inorg.Chem.|57|6491|doi:10.1021/acs.inorgchem.8b00551
CCDC 1555898: Experimental Crystal Structure Determination
Related Article: Jade Pratt, Aimee M. Bryan, Michelle Faust, Jessica N. Boynton, Petra Vasko, Brian D. Rekken, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2018|Inorg.Chem.|57|6491|doi:10.1021/acs.inorgchem.8b00551
CCDC 1555903: Experimental Crystal Structure Determination
Related Article: Jade Pratt, Aimee M. Bryan, Michelle Faust, Jessica N. Boynton, Petra Vasko, Brian D. Rekken, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2018|Inorg.Chem.|57|6491|doi:10.1021/acs.inorgchem.8b00551
CCDC 1555901: Experimental Crystal Structure Determination
Related Article: Jade Pratt, Aimee M. Bryan, Michelle Faust, Jessica N. Boynton, Petra Vasko, Brian D. Rekken, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2018|Inorg.Chem.|57|6491|doi:10.1021/acs.inorgchem.8b00551
CCDC 1555902: Experimental Crystal Structure Determination
Related Article: Jade Pratt, Aimee M. Bryan, Michelle Faust, Jessica N. Boynton, Petra Vasko, Brian D. Rekken, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2018|Inorg.Chem.|57|6491|doi:10.1021/acs.inorgchem.8b00551
CCDC 1555896: Experimental Crystal Structure Determination
Related Article: Jade Pratt, Aimee M. Bryan, Michelle Faust, Jessica N. Boynton, Petra Vasko, Brian D. Rekken, Akseli Mansikkamäki, James C. Fettinger, Heikki M. Tuononen, Philip P. Power|2018|Inorg.Chem.|57|6491|doi:10.1021/acs.inorgchem.8b00551