0000000001308256
AUTHOR
Meik Blanke
Mesogens with Aggregation-Induced Emission Formed by Hydrogen Bonding
In this contribution, we report a supramolecular approach toward mesogens showing aggregation-induced emission (AIE). AIE-active aromatic thioethers, acting as hydrogen-bond donors, were combined with alkoxystilbazoles as hydrogen-bond acceptors. Upon self-assembly, hydrogen-bonded complexes with monotropic liquid crystalline behavior were obtained. In addition, it was found that the introduction of a chiral citronellyl side chain leads to drastic bathochromic shift of the emission, which was not observed for linear alkyl chains. The mesomorphic behavior, as well as the photophysical properties as a solid and in the mesophase of the liquid crystalline assemblies, were studied in detail.
Naturally occurring polyphenols as building blocks for supramolecular liquid crystals – substitution pattern dominates mesomorphism
A modular supramolecular approach towards hydrogen-bonded liquid crystalline assemblies based on naturally occurring polyphenols is reported. The combination of experimental observations, crystallographic studies and semi-empirical analyses of the assemblies provides insight into the structure–property relationships of these materials. Here a direct correlation of the number of donor OH-groups as well as their orientation with the mesomorphic behavior is reported. We discovered that the number and orientation of the OH-groups have a stronger influence on the mesomorphic behavior of the supramolecular assemblies than the connectivity (e.g. stilbenoid or chalconoid) of the hydrogen bond donor…
Alkyloxy modified pyrene fluorophores with tunable photophysical and crystalline properties
Novel alkyloxy modified 2,7-di-tert-butyl-4,5,9,10-tetra(arylethynyl)pyrenes were prepared through a straightforward Sonogashira coupling approach. Optical properties such as quantum yields and absorption/emission spectra of the fluorophores were investigated by UV/Vis and fluorescence measurements. Aggregation induced excimer formation of the chromophores in polar solvents and in the solid state was proved by the presence of a characteristic bathochromically shifted emission band and a decrease of the emission capability. These results strongly indicate the unexpected observation that the excimer formation of adjacent pyrene rings is not prevented by the introduction of bulky tert-butyl su…
Photo-switching and -cyclisation of hydrogen bonded liquid crystals based on resveratrol
A series of hydrogen-bonded liquid crystals based on resveratrol and resveratrone is reported and investigated with respect to their photo-switchability (at 405 nm) and photo-cyclisation (at 300 nm).
CCDC 1939466: Experimental Crystal Structure Determination
Related Article: Meik Blanke, Jan Balszuweit, Marco Saccone, Christoph Wölper, David Doblas Jiménez, Markus Mezger, Jens Voskuhl, Michael Giese|2020|Chem.Commun.|56|1105|doi:10.1039/C9CC07721A
CCDC 1895646: Experimental Crystal Structure Determination
Related Article: Andreas Kapf, Hassan Eslahi, Meik Blanke, Marco Saccone, Michael Giese, Marcel Albrecht|2019|New J.Chem.|43|6361|doi:10.1039/C9NJ00652D
CCDC 1939467: Experimental Crystal Structure Determination
Related Article: Meik Blanke, Jan Balszuweit, Marco Saccone, Christoph Wölper, David Doblas Jiménez, Markus Mezger, Jens Voskuhl, Michael Giese|2020|Chem.Commun.|56|1105|doi:10.1039/C9CC07721A
CCDC 1942435: Experimental Crystal Structure Determination
Related Article: Jan Balszuweit, Meik Blanke, Marco Saccone, Markus Mezger, Constantin G. Daniliuc, Christoph Wölper, Michael Giese, Jens Voskuhl|2021|MSDE|6|390|doi:10.1039/D0ME00171F
CCDC 1895645: Experimental Crystal Structure Determination
Related Article: Andreas Kapf, Hassan Eslahi, Meik Blanke, Marco Saccone, Michael Giese, Marcel Albrecht|2019|New J.Chem.|43|6361|doi:10.1039/C9NJ00652D
CCDC 1945777: Experimental Crystal Structure Determination
Related Article: Jan Balszuweit, Meik Blanke, Marco Saccone, Markus Mezger, Constantin G. Daniliuc, Christoph Wölper, Michael Giese, Jens Voskuhl|2021|MSDE|6|390|doi:10.1039/D0ME00171F
CCDC 1938656: Experimental Crystal Structure Determination
Related Article: Marco Saccone, Meik Blanke, Constantin G. Daniliuc, Heikki Rekola, Jacqueline Stelzer, Arri Priimagi, Jens Voskuhl, Michael Giese|2019|ACS Materials Lett.|1|589|doi:10.1021/acsmaterialslett.9b00371