0000000001310808

AUTHOR

M. O. Plutenko

Cu(II), Ni(II) and Zn(II) mononuclear building blocks based on new polynucleating azomethine ligand : Synthesis and characterization

Five new mononuclear complexes formed by the polynucleating ligand 2-[1-(3,5-dimethyl)pyrazolyl]-2-hydroxyimino-N′-[1-(2-pyridyl)ethylidene]acetohydrazide (HL): [Ni(L)(HL)]ClO4·2CH3OH (1), [Ni(L)2]·CH3OH (2), [Zn(L)(HL)]ClO4·2CH3OH (3), [Zn(L)2]·CH3OH (4) and [Cu(L)2]·CH3OH (5) were synthesized and characterized by elemental analysis, mass-spectrometry, IR-spectroscopy and X-ray analysis. The complexes reveal distorted octahedral N4O2 coordination arrangement formed by both protonated and deprotonated (1, 3) or two deprotonated ligand molecules (2, 4, 5). The presence of non-coordinated oxime and pyrazole groups resulted in the formation of extensive systems of hydrogen bonds in the crystal…

research product

A second monoclinic polymorph of 2-(3,5-dimethyl-1H-pyrazol-1-yl)-2-hy-droxy-imino-N'-[1-(pyridin-2-yl)ethyl-idene]acetohydrazide.

The title compound, C14H16N6O2, is a second monoclinic polymorph of 2-[1-(3,5-dimeth­yl)pyrazol­yl]-2-hy­droxy­imino-N′-[1-(2-pyrid­yl)ethyl­idene] acetohydrazide, with two crystallographically independent mol­ecules per asymmetric unit. The non-planar mol­ecules are chemically equal having similar geometric parameters. The previously reported polymorph [Plutenko et al. (2012 ▶). Acta Cryst. E68, o3281] was described in space group Cc (Z = 4). The oxime group and the O atom of the amide group are anti with respect to the C—C bond. In the crystal, mol­ecules are connected by N—H⋯N hydrogen bonds into zigzag chains extending along the b axis.

research product

Dioxomolybdenum(VI) complexes of hydrazone phenolate ligands - syntheses and activities in catalytic oxidation reactions

Abstract The new cis-dioxomolybdenum (VI) complexes [MoO2(L2)(H2O)] (2) and [MoO2(L3)(H2O)] (3) containing the tridentate hydrazone-based ligands (H2L2 = N'-(3,5-di-tert-butyl-2-hydroxybenzylidene)-4-methylbenzohydrazide and H2L3 = N'-(2-hydroxybenzylidene)-2-(hydroxyimino)propanehydrazide) have been synthesized and characterized via IR, 1H and 13C NMR spectroscopy, mass spectrometry, and single crystal X-ray diffraction analysis. The catalytic activities of complexes 2 and 3, and the analogous known complex [MoO2(L1)(H2O)] (1) (H2L1 = N'-(2-hydroxybenzylidene)-4-methylbenzohydrazide) have been evaluated for various oxidation reactions, viz. oxygen atom transfer from dimethyl sulfoxide to t…

research product

A second monoclinic polymorph of 2-(3,5-dimethyl-1H-pyrazol-1-yl)-2-hydroxyimino-N'-[1-(pyridin-2-yl)ethylidene]acetohydrazide

[Introduction] The title compound, C 14 H 16 N 6 O 2 , is a second monoclinic polymorph of 2-[1-(3,5-dimethyl)pyrazolyl]-2-hydroxyimino- N 0 -[1-(2-pyridyl)ethylidene] acetohydrazide, with two crystal- lographically independent molecules per asymmetric unit. The non-planar molecules are chemically equal having similar geometric parameters. The previously reported polymorph [Plutenko et al. (2012). Acta Cryst. E 68 , o3281] was described in space group Cc ( Z = 4). The oxime group and the O atom of the amide group are anti with respect to the C—C bond. In the crystal, molecules are connected by N—H N hydrogen bonds into zigzag chains extending along the b axis. peerReviewed

research product

2-(3,5-Dimethyl-1H-pyrazol-1-yl)-2-hy-droxy-imino-N'-[1-(pyridin-2-yl)ethyl-idene]acetohydrazide.

In the title compound, C14H16N6O2, the dihedral angles formed by the mean plane of the acetohydrazide group [maximum deviation 0.0629 (12) A] with the pyrazole and pyridine rings are 81.62 (6) and 38.38 (4)° respectively. In the crystal, mol­ecules are connected by N—H⋯O and O—H⋯N hydrogen bonds into supra­molecular chains extending parallel to the c-axis direction.

research product

Crystal structure of 2-hy­droxy­imino-2-(pyridin-2-yl)-N'-[1-(pyridin-2-yl)ethyl­idene]acetohydrazide

The mol­ecule of the title compound is approximately planar with the planes of the two pyridine rings inclined to one another by 5.51 (7)°. In the crystal, mol­ecules are linked by bifurcated O—H⋯(O,N) hydrogen bonds, forming inversion dimers, which are in turn linked via C—H⋯O and C—H⋯N hydrogen bonds, forming sheets lying parallel to (502).

research product

CCDC 956724: Experimental Crystal Structure Determination

Related Article: M. O. Plutenko, R. D. Lampeka, M. Haukka and E. Nordlander|2013|Acta Crystallogr.,Sect.E:Struct.Rep.Online|69|o765|doi:10.1107/S1600536813009628

research product