0000000001313093

AUTHOR

Paramita Kar

showing 5 related works from this author

Coordination Polymers Containing Manganese(II)-Azido Layers Connected by Dipyridyl-tetrazine and 4,4′-Azobis(pyridine) Linkers

2013

Two new polynuclear manganese(II) complexes [Mn(dptz)(N(3))(2)](n) (1) and [Mn(azpy)(N(3))(2)](n) (2) (where dptz = dipyridyl-tetrazine and azpy = 4,4'-azobis(pyridine)) have been synthesized by self-assembly of the ligand azide, together with dptz and azpy as secondary spacers. The compounds are characterized by single-crystal X-ray diffraction analyses and variable-temperature magnetic measurements. The structural analyses reveal that in complex 1, which is the first reported Mn(II) complex with the ligand dptz, two μ(1,3) bridging azides connect neighboring manganese ions in a zigzag manner to generate a neutral two-dimensional (2D) sheet which is further connected by the dptz ligands to…

Models MolecularAzidesManganeseMolecular StructurePolymersPyridinesStereochemistryLigandTetrazoleschemistry.chemical_elementManganeseMagnetic susceptibilityInorganic ChemistryTetrazinechemistry.chemical_compoundCrystallographychemistryCoordination ComplexesPyridineAntiferromagnetismMoleculeAzidePhysical and Theoretical ChemistryAzo CompoundsInorganic Chemistry
researchProduct

Antiferromagnetic porous metal-organic framework containing mixed-valence [Mn(II)4Mn(III)2(μ4-O)2]10+ units with catecholase activity and selective g…

2012

A multifunctional porous metal organic framework based on mixed-valence hexa-nuclear [Mn(III)(2)Mn(II)(4)O(2)(pyz)(2)(C(6)H(5)CH(2)COO)(10)] (pyz = pyrazine) units has been synthesized. The complex has been characterized by elemental analysis, IR spectroscopy, single-crystal X-ray diffraction analysis, and variable-temperature magnetic measurements. The structural analysis reveals that the bidentate pyz molecules connect each [Mn(6)] unit to its four [Mn(6)] neighbors through the peripheral Mn(II) centers, giving rise to a three-dimensional (3D) distorted diamond-like porous framework. Variable-temperature (2-300 K) magnetic susceptibility measurements show the presence of dominant antiferr…

Models MolecularDenticityAcetonitrilesPyrazineStereochemistryCatecholsInfrared spectroscopyCrystallography X-RayInorganic Chemistrychemistry.chemical_compoundCoordination ComplexesAntiferromagnetismMoleculePhysical and Theoretical ChemistryAcetonitrileManganeseValence (chemistry)Molecular StructureChemistryHydrolysisMagnetic PhenomenaTemperatureCarbon DioxideMagnetic susceptibilityCrystallographyKineticsPyrazinesAdsorptionGasesOxidation-ReductionPorosityInorganic chemistry
researchProduct

Synthesis and characterization of four novel manganese(II) chains formed by 4,4′-azobis(pyridine) and benzoate or nitrobenzoates: Stabilization of un…

2013

Abstract Four new manganese(II) coordination polymers: [Mn(4,4′-azpy)(C6H5COO)2](4,4′-azpy)0.5 (1), [Mn(4,4′-azpy)(p-(NO2)C6H4COO)2] (2), [Mn(4,4′-azpy)(m-(NO2)C6H4COO)2] (3) and [Mn(4,4′-azpy)(o-(NO2)C6H4COO)2(H2O)2] (4), where 4,4′-azpy = 4,4′-azobis(pyridine), have been synthesized by self-assembly of MnX2 (X = benzoate, p-, m-, or o-nitrobenzoates) together with 4,4′-azpy. All four complexes were characterized by elemental analyses, IR spectroscopy, thermal analyses, single-crystal X-ray diffraction analyses and variable-temperature magnetic measurements. The structural analyses reveal that complexes 1, 2 and 3 feature a 1D molecular ladder formed by syn–syn (complex 1) or syn–anti (com…

Hydrogen bondStereochemistryDimerSupramolecular chemistryCrystal structureZero field splittingMagnetic susceptibilityInorganic Chemistrychemistry.chemical_compoundCrystallographychemistryPyridineMaterials ChemistryMoleculePhysical and Theoretical ChemistryPolyhedron
researchProduct

CCDC 939232: Experimental Crystal Structure Determination

2013

Related Article: Paramita Kar, Michael G. B. Drew, Carlos J. Gómez-García, and Ashutosh Ghosh|2013|Inorg.Chem.|52|1640|doi:10.1021/ic302548z

Space GroupCrystallographycatena-((mu~2~-44'-Diazene-12-diyldipyridine)-bis(mu~2~-azido)-manganese)Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 939231: Experimental Crystal Structure Determination

2013

Related Article: Paramita Kar, Michael G. B. Drew, Carlos J. Gómez-García, and Ashutosh Ghosh|2013|Inorg.Chem.|52|1640|doi:10.1021/ic302548z

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-(bis(mu~2~-36-Di(pyridin-4-yl)-1245-tetrazine)-tetrakis(mu~2~-azido)-di-manganese)Experimental 3D Coordinates
researchProduct