0000000001313506

AUTHOR

Néstor Calvo Galve

showing 22 related works from this author

Two Consecutive Magneto-Structural Gas-Solid Transformations in Non-Porous Molecular Materials

2018

Modification of the magnetic properties in a solid-state material upon external stimulus has attracted much attention in the recent years for their potential applications as switches and sensors. Within the field of coordination polymers, gas sorption studies typically focus on porous solids, with the gas molecules accommodating in the channels. Here we present a 1D non-porous coordination polymer capable of incorporating HCl gas molecules, which not only causes a reordering of its atoms in the solid state but also provokes dramatic changes in the magnetic behavior. Subsequently, a further solid-gas transformation can occur with the extrusion of HCl gas molecules causing a second structural…

Diffractionchemistry.chemical_classification010405 organic chemistryCoordination polymerMagnetismOrganic ChemistrySorptionGeneral ChemistryPolymer010402 general chemistry01 natural sciencesCatalysis0104 chemical sciencesReaccions químiqueschemistry.chemical_compoundchemistryChemical physicsMoleculeExtrusionPorosityMaterialsChemistry - A European Journal
researchProduct

Exploiting Reaction-Diffusion Conditions to Trigger Pathway Complexity in the Growth of a MOF.

2021

Coordination polymers (CPs), including metal–organic frameworks (MOFs), are crystalline materials with promising applications in electronics, magnetism, catalysis, and gas storage/separation. However, the mechanisms and pathways underlying their formation remain largely undisclosed. Herein, we demonstrate that diffusion-controlled mixing of reagents at the very early stages of the crystallization process (i.e., within ≈40 ms), achieved by using continuous-flow microfluidic devices, can be used to enable novel crystallization pathways of a prototypical spin-crossover MOF towards its thermodynamic product. In particular, two distinct and unprecedented nucleation-growth pathways were experimen…

Materials sciencePolymersCrystallization; Metal–organic frameworks; microfluidic technologies; pathway complexity; Reaction-diffusion conditionsMicrofluidicsMicrofluidicsCrystal growth010402 general chemistrypathway complexity01 natural sciencesCatalysislaw.inventionMolecular dynamicslawCristal·litzacióCrystallizationMaterialsMixing (physics)Metal–organic frameworks010405 organic chemistryGeneral MedicineGeneral ChemistryMicrofluídica0104 chemical sciencesPolímersmicrofluidic technologiesChemical physicsParticleMetal-organic frameworkCristallsPorous mediumCrystallizationcrystallization; metal–organic frameworks; microfluidic technologies; pathway complexity; reaction-diffusion conditionsReaction-diffusion conditionsAngewandte Chemie (International ed. in English)
researchProduct

Isostructural compartmentalized spin-crossover coordination polymers for gas confinement

2016

[EN] Here we present two FeII coordination polymers that possess discrete compartments suitable for CO2 physisorption despite the lack of permanent channels. The two crystalline materials, of general formula [Fe(btzbp)3](X)2 (X = ClO4 or BF4), present voids of ca. 250 Å3, which each can accommodate up to two CO2 molecules. The abrupt spin transition can be modified upon CO2 sorption, and different magnetic behaviour is observed depending on the number of molecules sorbed.

chemistry.chemical_classificationMaterials scienceInorganic chemistryCrystalline materialsSpin transitionSorption02 engineering and technologyPolymer010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences3. Good health0104 chemical sciencesInorganic ChemistryPhysisorptionchemistryChemical physicsSpin crossoverMoleculeIsostructural0210 nano-technology
researchProduct

Inside Cover: Exploiting Reaction‐Diffusion Conditions to Trigger Pathway Complexity in the Growth of a MOF (Angew. Chem. Int. Ed. 29/2021)

2021

Materials science010405 organic chemistryINTGeneral Chemistry01 natural sciencesCatalysis0104 chemical scienceslaw.inventionChemical engineeringlawReaction–diffusion systemMetal-organic frameworkCover (algebra)CrystallizationAngewandte Chemie International Edition
researchProduct

Innentitelbild: Exploiting Reaction‐Diffusion Conditions to Trigger Pathway Complexity in the Growth of a MOF (Angew. Chem. 29/2021)

2021

Chemical engineeringlawChemistryReaction–diffusion systemMetal-organic frameworkGeneral MedicineCrystallizationlaw.inventionAngewandte Chemie
researchProduct

Gas confinement in compartmentalized coordination polymers for highly selective sorption

2016

Discrimination between different gases is an essential aspect for industrial and environmental applications involving sensing and separation. Several classes of porous materials have been used in this context, including zeolites and more recently MOFs. However, to reach high selectivities for the separation of gas mixtures is a challenging task that often requires the understanding of the specific interactions established between the porous framework and the gases. Here we propose an approach to obtain an enhanced selectivity based on the use of compartmentalized coordination polymers, named CCP-1 and CCP-2, which are crystalline materials comprising isolated discrete cavities. These compar…

Solucions polimèriquesContext (language use)02 engineering and technologyNeutron scattering010402 general chemistry01 natural sciencescomplex mixturesMolecular dynamicsAdsorptionOrganic chemistryPorositychemistry.chemical_classificationChemistrySorptionQuímicaGeneral ChemistryPolymer021001 nanoscience & nanotechnologyeye diseases3. Good health0104 chemical sciencesChemistry[CHIM.POLY]Chemical Sciences/PolymersChemical engineeringsense organs0210 nano-technologyPorous medium
researchProduct

A Mixed-Ligand Approach for Spin-Crossover Modulation in a Linear FeII Coordination Polymer

2014

In this work, we present a family of Fe(II) coordination polymers of general formula [Fe(btzx)(3-3x)(btix)(3x)](ClO4)2 with interesting spin-crossover properties. These coordination polymers have been synthesized using chemical mixtures of two different but closely related ligands, 1,4-bis(tetrazol-1-ylmethyl)benzene (btzx) and 1,4-bis(triazol-1-ylmethyl)benzene (btix), and the effect of a gradual substitution of the ligand in the spin transition temperature has been investigated. Several chemical mixtures have been structurally characterized by X-ray powder diffraction indicating a clear critical amount in the composition of the mixture after which mixed phases rather than a single phase c…

chemistry.chemical_classificationPolymersChemistryCoordination polymerLigandStereochemistrySpin transitionPolymerLigands3. Good healthInorganic ChemistryThermogravimetrychemistry.chemical_compoundCrystallographySpin crossoverThermogravimetryFerrous CompoundsPhysical and Theoretical ChemistryBenzenePowder DiffractionPowder diffractionInorganic Chemistry
researchProduct

Interplay between spin transition and gas sorption in compartmentalized coordination polymers

2019

El trabajo descrito en esta tesis se enmarca dentro de los polímeros de coordinación compartimentalizados. Los polímeros de coordinación son materiales híbridos orgánicos-inorgánicos formados por un metal rodeado por unos ligandos orgánicos unidos mediante enlace de coordinación y se pueden obtener estructuras que se extienden en una, dos o tres direcciones del espacio. Las infinitas posibilidades que existen debido a la gran variedad de metales disponibles y especialmente, a la posibilidad de sintetizar múltiples ligandos orgánicos permite diseñar químicamente materiales con propiedades “a la carta”, además de la posibilidad de presentar multifuncionalidad, esto es, la combinación de diver…

coordination polymersUNESCO::QUÍMICA::Química inorgánicacrystal growing:QUÍMICA::Química inorgánica [UNESCO]mofs
researchProduct

Inside Cover: Exploiting Reaction-Diffusion Conditions to Trigger Pathway Complexity in the Growth of a MOF

2021

How do you unveil pathway complexity in a crystallization process? In their Research Article on page 15920, Alessandro Sorrenti, Marco D′Abramo, Guillermo Mínguez Espallargas, Josep Puigmartí-Luis, and co-workers show that harnessing a reaction-diffusion (RD) process within a continuous flow microfluidic device, and on a millisecond timescale, is key to enable two unprecedented nucleation-growth pathways during a MOF synthesis.

CristallsMaterials
researchProduct

CCDC 1473649: Experimental Crystal Structure Determination

2017

Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G

Space GroupCrystallographycatena-[tris(mu-14-bis(1H-tetrazol-1-ylmethyl)benzene)-iron(ii) diperchlorate carbon dioxide]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1473650: Experimental Crystal Structure Determination

2017

Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tris(mu-14-bis(1H-tetrazol-1-ylmethyl)benzene)-iron(ii) diperchlorate ethene]Experimental 3D Coordinates
researchProduct

CCDC 1440481: Experimental Crystal Structure Determination

2016

Related Article: Néstor Calvo Galve, Mónica Giménez-Marqués, Miguel Palomino, Susana Valencia, Fernando Rey, Guillermo Mínguez Espallargas, Eugenio Coronado|2016|Inorg.Chem.Front.|3|808|doi:10.1039/C5QI00277J

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tris(mu-11'-([11'-biphenyl)-44'-diylbis(methylene)]bis(1H-tetrazole))-iron(ii) bis(tetrafluoroborate)]Experimental 3D Coordinates
researchProduct

CCDC 1440482: Experimental Crystal Structure Determination

2016

Related Article: Néstor Calvo Galve, Mónica Giménez-Marqués, Miguel Palomino, Susana Valencia, Fernando Rey, Guillermo Mínguez Espallargas, Eugenio Coronado|2016|Inorg.Chem.Front.|3|808|doi:10.1039/C5QI00277J

catena-[tris(mu-11'-((11'-biphenyl)-44'-diylbis(methylene))bis(1H-tetrazole))-iron bis(tetrafluoroborate)]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1439097: Experimental Crystal Structure Determination

2017

Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tris(mu-14-bis(1H-tetrazol-1-ylmethyl)benzene)-iron bis(tetrafluoroborate)]Experimental 3D Coordinates
researchProduct

CCDC 1439096: Experimental Crystal Structure Determination

2017

Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G

Space GroupCrystallographycatena-[tris(mu-14-bis(1H-tetrazol-1-ylmethyl)benzene)-iron(ii) bis(tetrafluoroborate)]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1473651: Experimental Crystal Structure Determination

2017

Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tris(mu-14-bis(1H-tetrazol-1-ylmethyl)benzene)-iron(ii) diperchlorate methane]Experimental 3D Coordinates
researchProduct

CCDC 1473652: Experimental Crystal Structure Determination

2017

Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G

catena-[tris(mu-14-bis(1H-tetrazol-1-ylmethyl)benzene)-iron(ii) bis(tetrafluoroborate) carbon dioxide]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1473654: Experimental Crystal Structure Determination

2017

Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G

Space GroupCrystallographycatena-[tris(mu-14-bis(1H-tetrazol-1-ylmethyl)benzene)-iron(ii) bis(tetrafluoroborate) methane]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1473653: Experimental Crystal Structure Determination

2017

Related Article: Mónica Giménez-Marqués, Néstor Calvo Galve, Miguel Palomino, Susana Valencia, Fernando Rey, Germán Sastre, Iñigo J. Vitórica-Yrezábal, Mónica Jiménez-Ruiz, J. Alberto Rodríguez-Velamazán, Miguel A. González, José L. Jordá, Eugenio Coronado, Guillermo Mínguez Espallargas|2017|Chemical Science|8|3109|doi:10.1039/C6SC05122G

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameterscatena-[tris(mu-14-bis(1H-tetrazol-1-ylmethyl)benzene)-iron(ii) bis(tetrafluoroborate) ethene]Experimental 3D Coordinates
researchProduct

CCDC 1833302: Experimental Crystal Structure Determination

2018

Related Article: Julia Miguel‐Donet, Javier López‐Cabrelles, Néstor Calvo Galve, Eugenio Coronado, Guillermo Mínguez Espallargas|2018|Chem.-Eur.J.|24|12426|doi:10.1002/chem.201802510

Space GroupCrystallographyCrystal SystemCrystal Structurebis(1H-imidazol-3-ium) tetrachloro-copper(II)Cell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1833300: Experimental Crystal Structure Determination

2018

Related Article: Julia Miguel‐Donet, Javier López‐Cabrelles, Néstor Calvo Galve, Eugenio Coronado, Guillermo Mínguez Espallargas|2018|Chem.-Eur.J.|24|12426|doi:10.1002/chem.201802510

catena-[(mu-chloro)-bis(1H-imidazole)-chloro-copper(ii)]Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1833301: Experimental Crystal Structure Determination

2018

Related Article: Julia Miguel‐Donet, Javier López‐Cabrelles, Néstor Calvo Galve, Eugenio Coronado, Guillermo Mínguez Espallargas|2018|Chem.-Eur.J.|24|12426|doi:10.1002/chem.201802510

Space GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinatescatena-((mu2-Imidazolato-NN')-chloro-bis(imidazole)-chloro-copper(ii))
researchProduct