0000000001314649

AUTHOR

Kazuo Inaba

showing 4 related works from this author

Changes in fish communities due to benthic habitat shifts under ocean acidification conditions

2020

Ocean acidification will likely change the structure and function of coastal marine ecosystems over coming decades. Volcanic carbon dioxide seeps generate dissolved CO2 and pH gradients that provide realistic insights into the direction and magnitude of these changes. Here, we used fish and benthic community surveys to assess the spatio-temporal dynamics of fish community properties off CO2 seeps in Japan. Adding to previous evidence from ocean acidification ecosystem studies conducted elsewhere, our findings documented shifts from calcified to non-calcified habitats with reduced benthic complexity. In addition, we found that such habitat transition led to decreased diversity of associated …

Environmental Engineering010504 meteorology & atmospheric sciencesRange (biology)CoralReef-associated fish010501 environmental sciences01 natural sciencesJapanEnvironmental ChemistryAnimalsEcosystemMarine ecosystemSeawaterScleractinian coral coverBiogenic habitat complexity Carbon dioxide Reef-associated fish Scleractinian coral coverWaste Management and DisposalBiogenic habitat complexityEcosystem0105 earth and related environmental sciencesEcologyCoral ReefsfungiGlobal warmingOcean acidificationHydrogen-Ion ConcentrationPollutionHabitatCarbon dioxideBenthic zoneEnvironmental sciencegeographic locations
researchProduct

Ocean acidification drives community shifts towards simplified non-calcified habitats in a subtropical?temperate transition zone

2018

AbstractRising atmospheric concentrations of carbon dioxide are causing surface seawater pH and carbonate ion concentrations to fall in a process known as ocean acidification. To assess the likely ecological effects of ocean acidification we compared intertidal and subtidal marine communities at increasing levels of pCO2 at recently discovered volcanic seeps off the Pacific coast of Japan (34° N). This study region is of particular interest for ocean acidification research as it has naturally low levels of surface seawater pCO2 (280–320 µatm) and is located at a transition zone between temperate and sub-tropical communities. We provide the first assessment of ocean acidification effects at …

0106 biological sciencesMultidisciplinary010504 meteorology & atmospheric sciences010604 marine biology & hydrobiologyAragonitelcsh:RBiodiversitylcsh:MedicineIntertidal zoneOcean acidificationengineering.material01 natural sciencesArticlechemistry.chemical_compoundOceanographychemistryHabitatCarbon dioxideengineeringEnvironmental sciencelcsh:QSeawaterEcosystemlcsh:Science0105 earth and related environmental sciencesScientific Reports
researchProduct

Seawater carbonate chemistry and composition of intertidal and subtidal communities

2018

Rising atmospheric concentrations of carbon dioxide are causing surface seawater pH and carbonate ion concentrations to fall in a process known as ocean acidification. To assess the likely ecological effects of ocean acidification we compared intertidal and subtidal marine communities at increasing levels of pCO2 at recently discovered volcanic seeps off the Pacific coast of Japan (34° N). This study region is of particular interest for ocean acidification research as it has naturally low levels of surface seawater pCO2 (280–320 µatm) and is located at a transition zone between temperate and sub-tropical communities. We provide the first assessment of ocean acidification effects at a biogeo…

Ocean Acidification International Coordination Centre (OA-ICC)SalinityTemperateBicarbonate ion standard deviationCommunity composition and diversityAlkalinity total standard deviationinorganicAlkalinityCalculated using seacarb after Orr et al. (2018)Fugacity of carbon dioxide in seawater standard deviationExperimentTemperature waterCarbon inorganic dissolvedCalculated using seacarb after Nisumaa et al 2010Aragonite saturation stateNorth PacificAlkalinity totaltotalCO2 ventpHTemperaturedissolvedCarbonate ionPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Carbon dioxide standard deviationTemperature water standard deviationEarth System ResearchField observationstandard deviationCalcite saturation stateCoverageFugacity of carbon dioxide in seawaterwaterPartial pressure of carbon dioxideSiteRocky-shore communityAragonite saturation state standard deviationBenthosSalinity standard deviationOcean Acidification International Coordination Centre OA ICCCarbon inorganic dissolved standard deviationCalcite saturation state standard deviationBicarbonate ionTypeCalculated using seacarb after Nisumaa et al. (2010)Partial pressure of carbon dioxide standard deviationIndividualsCarbonate system computation flagpH standard deviationCarbonate ion standard deviationCalculated using seacarb after Orr et al 2018Fugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonPartial pressure of carbon dioxide water at sea surface temperature wet airCarbon dioxideEntire communityRocky shore communityFugacity of carbon dioxide water at sea surface temperature wet airCoast and continental shelf
researchProduct

Seawater carbonate chemistry and fish communities properties off CO2 seeps in Japan

2020

Ocean acidification will likely change the structure and function of coastal marine ecosystems over coming decades. Volcanic carbon dioxide seeps generate dissolved CO2 and pH gradients that provide realistic insights into the direction and magnitude of these changes. Here, we used fish and benthic community surveys to assess the spatio-temporal dynamics of fish community properties off CO2 seeps in Japan. Adding to previous evidence from ocean acidification ecosystem studies conducted elsewhere, our findings documented shifts from calcified to non-calcified habitats with reduced benthic complexity. In addition, we found that such habitat transition led to decreased diversity of associated …

Ocean Acidification International Coordination Centre (OA-ICC)TemperateSalinityCanopy heightCommunity composition and diversityCoverage standard deviationinorganicAlkalinityExperimentTemperature waterCarbon inorganic dissolvedCalculated using seacarb after Nisumaa et al 2010Aragonite saturation stateNorth PacificAlkalinity totaltotalCO2 ventReplicatespHPelagosTemperaturedissolvedCanopy height standard deviationCarbonate ionPartial pressure of carbon dioxide (water) at sea surface temperature (wet air)Fish standard deviationTemperature water standard deviationEarth System Researchstandard deviationField observationgeographic locationsPotentiometric titrationCoverageCalcite saturation stateLocationPotentiometricwaterPartial pressure of carbon dioxideSiteRocky-shore communityBenthosSpecies richness standard deviationSalinity standard deviationOcean Acidification International Coordination Centre OA ICCBiotic Habitat Profile ratioTypeBicarbonate ionCalculated using seacarb after Nisumaa et al. (2010)Calculated using CO2SYSfungiPartial pressure of carbon dioxide standard deviationCarbonate system computation flagpH standard deviationFugacity of carbon dioxide (water) at sea surface temperature (wet air)CarbonPartial pressure of carbon dioxide water at sea surface temperature wet airFishTransectCarbon dioxideRocky shore communityEntire communityBiotic Habitat Profile ratio standard deviationFugacity of carbon dioxide water at sea surface temperature wet airSeasonCoast and continental shelfSpecies richness
researchProduct