0000000001315231

AUTHOR

David Vonlanthen

showing 5 related works from this author

Low Current Density Driving Leads to Efficient, Bright and Stable Green Electroluminescence

2013

Electroluminescent devices have the potential to reshape lighting and display technologies by providing low-energy consuming solutions with great aesthetic features, such as flexibility and transparency. In particular, light-emitting electrochemical cells (LECs) are among the simplest electro-luminescent devices. The device operates with air-stable materials and the active layer can be resumed to an ionic phosphorescent emitter. As a consequence, LECs can be assembled using solution-process technologies, which could allow for low-cost and large-area lighting applications in the future. High efficiencies have been reported at rather low luminances (<50 cd m(-2)) and at very low current densi…

Materials scienceRenewable Energy Sustainability and the Environmentbusiness.industryElectroluminescenceLuminanceElectrochemical cellActive layerDuty cycleOptoelectronicsGeneral Materials SciencebusinessPhosphorescenceCurrent densityCommon emitterAdvanced Energy Materials
researchProduct

Bis-Sulfone- and Bis-Sulfoxide-Spirobifluorenes: Polar Acceptor Hosts with Tunable Solubilities for Blue-Phosphorescent Light-Emitting Devices

2016

Bis-sulfone- and bis-sulfoxide-spirobifluorenes are a promising class of high-triplet-energy electron-acceptor hosts for blue phosphorescent light-emitting devices. The molecular design and synthetic route are simple and facilitate tailoring of the solubilities of the host materials without lowering the high-energy triplet state. The syntheses and characterization (including single-crystal structures) of four electron-accepting hosts are reported; the trend in their reduction potentials is consistent with the electron-withdrawing nature of the sulfone or sulfoxide substituents. Emission maxima of 421–432 nm overlap with the MLCT absorption of the sky-blue emitter bis(4,6-difluorophenyl-pyri…

Phosphine oxidechemistry.chemical_classificationOrganic ChemistrySulfoxide02 engineering and technologyElectron acceptor010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistry01 natural sciencesAcceptor0104 chemical sciencesSulfonechemistry.chemical_compoundchemistryOLEDPhysical and Theoretical ChemistryTriplet state0210 nano-technologyPhosphorescenceEuropean Journal of Organic Chemistry
researchProduct

CCDC 974892: Experimental Crystal Structure Determination

2016

Related Article: Cathrin D. Ertl, Henk J. Bolink, Catherine E. Housecroft, Edwin C. Constable, Enrique Ortí, José M. Junquera-Hernández, Markus Neuburger, Nail M. Shavaleev, Mohammad Khaja Nazeeruddin and David Vonlanthen|2016|Eur.J.Org.Chem.|2016|2037|doi:10.1002/ejoc.201600247

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parameters27-bis(Phenylsulfonyl)-99'-spirobi[fluorene] dichloromethane solvateExperimental 3D Coordinates
researchProduct

CCDC 993287: Experimental Crystal Structure Determination

2016

Related Article: Cathrin D. Ertl, Henk J. Bolink, Catherine E. Housecroft, Edwin C. Constable, Enrique Ortí, José M. Junquera-Hernández, Markus Neuburger, Nail M. Shavaleev, Mohammad Khaja Nazeeruddin and David Vonlanthen|2016|Eur.J.Org.Chem.|2016|2037|doi:10.1002/ejoc.201600247

Space GroupCrystallographyCrystal System27-bis(Pentylsulfonyl)-99'-spirobi[fluorene]Crystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 974893: Experimental Crystal Structure Determination

2016

Related Article: Cathrin D. Ertl, Henk J. Bolink, Catherine E. Housecroft, Edwin C. Constable, Enrique Ortí, José M. Junquera-Hernández, Markus Neuburger, Nail M. Shavaleev, Mohammad Khaja Nazeeruddin and David Vonlanthen|2016|Eur.J.Org.Chem.|2016|2037|doi:10.1002/ejoc.201600247

Space GroupCrystallography27-bis(Mesitylsulfonyl)-99'-spirobi[fluorene]Crystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct